CONCERNING RELATIVELY UNIFORM CONVERGENCE*

BY R. L. MOORE

According to E. H. Moore, a sequence of functions \(f_1(p), f_2(p), f_3(p), \ldots \), defined on a range \(K \), is said to converge, to a function \(f(p) \), relatively uniformly with respect to the scale function \(s(p) \) if, for every positive number \(e \), there exists a positive number \(\delta_e \) such that if \(n > \delta_e \) then, for every \(p \) which belongs to \(K \), \(|f_n(p) - f(p)| < e \cdot s(p)|\).

In this note I will establish the following theorem.

Theorem. If \(S \) is a convergent sequence of measurable functions \(f_1(x), f_2(x), f_3(x), \ldots \) defined on a measurable point set \(E \) and \(S \) converges for each \(x \) belonging to \(E \), then \(E \) contains a subset \(E_0 \) of measure zero such that the sequence \(S \) converges relatively uniformly for all values of \(x \) on the range \(E - E_0 \).

Proof. Suppose that \(S \) converges on \(E \) to the limit function \(f(x) \). By a theorem due to Egoroff\(^\dagger\), \(E \) contains a subset \(E_1 \) of measure less than 1 such that \(S \) converges to \(f(x) \) uniformly on \(E - E_1 \). Similarly \(E_1 \) contains a subset \(E_2 \) of measure less than \(1/2 \) such that \(S \) converges to \(f(x) \) uniformly on \(E_1 - E_2 \). Continue this process thus obtaining a sequence of point sets \(E_1, E_2, E_3, \ldots \) such that, for each \(n \), (1) the measure of \(E_n \) is less than \(1/n \), (2) \(E_{n+1} \) is a subset of \(E_n \), (3) \(S \) converges uniformly on \(E_n - E_{n+1} \). Let \(E_0 \) denote the set of points common to the sets \(E_1, E_2, E_3, \ldots \). The set \(E_0 \) is either vacuous or of measure 0. Furthermore

\[E = E_0 + (E - E_1) + (E_1 - E_2) + \cdots. \]

Since \(S \) converges uniformly on each point set of the countable collection \(E - E_1, E_1 - E_2, E_2 - E_3, \ldots \), it

* Presented to the Society, April 14, 1922.

\(\dagger \) *Comptes Rendus*, Jan. 30, 1911.
follows, by a theorem due to E. W. Chittenden, that* S converges relatively uniformly on the sum of all the point sets of this collection. But this sum is $E = E_0$.

The University of Texas

THE THEOREY OF CLOSURE OF TCHEBYCHEFF POLYNOMIALS FOR AN INFINITE INTERVAL†

BY J. A. SHOHAT (J. CHOKHATE)

1. The Theorem of Closure. Suppose we have a function $p(x)$, not negative in a given interval (a, b), for which all the integrals

$$\int_a^b p(x)x^n dx, \quad (n = 0, 1, 2, \ldots)$$

exist. It is well known that we can form a normal and orthogonal system of polynomials

$$g_n(x) = a_n x^n + \cdots, \quad a_n > 0, \quad (n = 0, 1, 2, \ldots),$$

uniquely determined by means of the relations

$$\int_a^b p(x)g_m(x)g_n(x)dx = \begin{cases} 0, & m \neq n, \\ 1, & m = n. \end{cases}$$

We call these polynomials Tchebycheff polynomials corresponding to the interval (a, b) with the characteristic function $p(x)$. The simplest example is given by Legendre polynomials, corresponding to the interval $(-1, +1)$ with $p(x) = 1$.

The most important application of Tchebycheff polynomials is their use in the development of functions into

† Presented to the Society, December 29, 1923.