ON SETS OF THREE CONSECUTIVE INTEGERS WHICH ARE QUADRATIC RESIDUES OF PRIMES*
BY A. A. BENNETT

In this paper we shall prove the following theorems.

Theorem I. For each prime, p, for which there are as many as three incongruent squares, there is a set of three consecutive residues (admitting zero and negative numbers as residues) which are squares, modulo p.

Theorem II. For p = 11, and for each prime p greater than 17, (and for no other primes), there is a set of three consecutive least positive (non-zero) residues which are squares, modulo p.

The problem† of finding three consecutive integers which are quadratic residues of a prime, p, is equivalent to the formally more general problem of finding two quantities, x, y, (y ≠ 0), such that x, y, x + y, x − y, are proportional to squares in the domain,‡ since we then have \(\frac{x}{y} - 1, \frac{x}{y}, \frac{x}{y} + 1\) as consecutive squares in the domain. We may show that for residues with respect to a modulus the condition is equivalent to the existence of a square of the form§ \(uv(u + v)(u - v)\). By taking \(u = x, v = y\), we see that the condition is necessary.

* Presented to the Society, April 10, 1925.
† For references, compare article of similar title by H. S. Vandiver, this BULLETIN, vol. 31 (1925), p. 33.
‡ That, in the system of natural numbers, it is impossible to have distinct quantities, x, y, such that x, y, x + y, x − y are all proportional to squares was proved by Fermat by his celebrated method of "infinite descent". See Carmichael, Theory of Numbers, p. 86.
§ It is of interest to note that in the case of natural numbers we may take \(u = x\) and \(v = y\) for this relation. Indeed, if \(x, y, x + y, x - y\) were proportional to squares, certainly their product would be a square. Conversely, suppose that their product were a square. Then either \(x, y, x + y, x - y\) would all be relatively prime, or if
That it is also sufficient may be shown as follows. Take \(x = (u^2 + v^2)^2 \) and \(y = 4uv(u^2 - v^2) \). Now \(x \) may also be written in the form \(4u^2v^2 - (u^2 - v^2)^2 \). Hence \(x + y = [2uv + (u^2 - v^2)]^2 \), and \(x - y = [2uv - (u^2 - v^2)]^2 \). Thus if \(uv(u^2 - v^2) \) is a perfect square, so also are \(x, y, x + y, \) and \(x - y \), when these are related in this manner.

The expression \(uv(u + v)(u - v) \) takes on the values \(6^2 \cdot 5, 2^2 \cdot 6, 2^2 \cdot 30 \), for the choices of \((u, v)\) as \((5, 4), (3, 1), (5, 1)\), respectively. But at least one of the three numbers \(5, 6, 30 \) is a quadratic residue of the prime \(p \) no matter how \(p \) is chosen. Hence there is always a choice of \(uv(u + v)(u - v) \) which is a non-zero quadratic residue for each prime \(p \) greater than 5. The corresponding solutions of the original problem are \((1/4, 5/4, 9/4), (1/24, 25/24, 49/24), (49/120, 169/120, 289/120)\). These numbers in turn are all different from zero for \(p = 11 \), or for \(p > 17 \), but not otherwise. Now every three consecutive residues no one of which is congruent to zero are congruent to a set of three consecutive least positive (non-zero) residues. Thus we establish the theorems announced.

There is no difficulty in obtaining linear forms, the primes within which are such that for each of these choices of \(p \), a preassigned number of consecutive residues shall be squares. Indeed, we have merely to select assigned numbers to be quadratic residues. Thus for \(p \) of the form \(24k + 1 \) or \(24k + 23 \), each of the numbers \(1, 2, 3, 4 \) is a square. By choosing a form for which \(2, 3, 5, 7, -1 \) are all quadratic residues, and dropping the condition of positivity, we have always the following twenty-one consecutive residues as squares, \(-10, -9, -8, \ldots, 9, 10\).

The University of Texas