CRITERIA THAT ANY NUMBER
OF REAL POINTS IN \(n\)-SPACE SHALL LIE
IN AN \((n-k)\)-SPACE

BY H. S. UHLER

The object of the present paper is to establish an algebraic
identity from which may be deduced necessary and suffi­
cient conditions that any large number of real points in
\(n\)-dimensional linear space shall lie in a linear \((n-k)\)-space.

Let the following matrix, in which the number of columns
is \(m\) and the number of rows is \(n+1\) \([m \geq (n+1)]\), be
compounded with its conjugate:

\[
\begin{bmatrix}
1 & 1 & \cdots & 1 \\
x_{1,1} & x_{2,1} & \cdots & x_{m,1} \\
x_{1,2} & x_{2,2} & \cdots & x_{m,2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1,n} & x_{2,n} & \cdots & x_{m,n}
\end{bmatrix}
\]

The determinant of the resulting symmetric square
array is

\[
\begin{vmatrix}
m & \sum x_{i,1} & \sum x_{i,2} & \cdots & \sum x_{i,n} \\
\sum x_{i,1} & \sum x_{i,1} x_{i,1} & \sum x_{i,1} x_{i,2} & \cdots & \sum x_{i,1} x_{i,n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\sum x_{i,n} & \sum x_{i,n} x_{i,1} & \sum x_{i,n} x_{i,2} & \cdots & \sum x_{i,n} x_{i,n}
\end{vmatrix} = \Delta;
\]

\((i = 1, 2, 3, \ldots, m)\).

Multiply all of the rows of \(\Delta\) except the top row by \(m\),
compensate by prefixing \(m^{-n}\), and remove the factor \(m\)
now common to the constituents of the first column to get

\[
\Delta = m^{1-n} \begin{vmatrix}
1 & \sum x_{i,1} & \sum x_{i,2} & \cdots & \sum x_{i,n} \\
\sum x_{i,1} & m \sum x_{i,1} x_{i,1} & m \sum x_{i,1} x_{i,2} & \cdots & m \sum x_{i,1} x_{i,n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\sum x_{i,n} & m \sum x_{i,n} x_{i,1} & m \sum x_{i,n} x_{i,2} & \cdots & m \sum x_{i,n} x_{i,n}
\end{vmatrix};
\]

\((i = 1, 2, 3, \ldots, m)\).
Next subtract \(\sum_{i=1}^{m} x_{i,k} \) times the first column from the \((k+1)\)th column, \((k = 1, 2, 3, \ldots, n)\), in order to reduce to zero all the constituents of the top row, except the leading constituent, and to find \(\Delta = U_n / m^{n-1} \), where

\[
U_n = \begin{vmatrix}
\sigma_{1,1} & \sigma_{1,2} & \cdots & \sigma_{1,n} \\
\sigma_{2,1} & \sigma_{2,2} & \cdots & \sigma_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{n,1} & \sigma_{n,2} & \cdots & \sigma_{n,n}
\end{vmatrix}
\]

and

\[
\sigma_{p,q} = m \sum_{i=1}^{m} x_{i,p} x_{i,q} - \left(\sum_{i=1}^{m} x_{i,p} \right) \left(\sum_{i=1}^{m} x_{i,q} \right) = m \sum_{i=j+1}^{m} \sum_{j=1}^{m-1} \left[(x_{i,p} - x_{j,p}) (x_{i,q} - x_{j,q}) \right] = \sigma_{q,p}.
\]

Now the determinant \(\Delta \) produced by compounding the matrices specified above is known to equal the sum of the squares of all the \(\nu \) determinants of order \(n+1 \) that can be formed from the columns of the original matrix, where

\[
\nu = \binom{m}{n+1}.
\]

Let any one of these determinants be denoted by \(D_r \); then the required algebraic identity is

\[
(1) \quad U_n = m^{n-1} \sum_{r=1}^{\nu} (D_r^2).
\]

Thus far no special meaning has been assigned to the \(x \)'s; they may represent complex quantities, etc.

To obtain the criteria contemplated advantage will be taken of the fact that \(D_r \) is squared in identity (1) so that if the \(x \)'s are real numbers \(D_r^2 \) will be incapable of becoming negative. Accordingly let the rectangular co-ordinates of a system of real points in \(n \)-dimensional flat space be

\[
(x_{i,1}, x_{i,2}, \ldots, x_{i,n}); \ i = 1, 2, 3, \ldots, m; \ m \geq (n+1).
\]

Also let \(S_t \) symbolize a linear space of \(t \) dimensions, a \(t \)-flat.
Now the vanishing of $\sum (D_r^2)$ is a necessary and sufficient condition that the m given real points shall lie in the same S_{n-1}, hence, by formula (1), a necessary and sufficient condition that any number $m \geq (n+1)$ of real points in S_n shall lie in the same S_{n-1} is the vanishing of U_n.

When $m = n+1$, $v = 1$ so that there is only one D_r in $\sum (D_r^2)$. This D_r represents $n!$ times the content of the hyper-figure or simplex having the $n+1$ given points as vertices.* Hence, for $m > (n+1)$, $\sum (D_r^2)$ is proportional to the sum of the squares of the contents of all the simplexes that can be formed from the m points taken $n+1$ at a time as vertices of each geometric figure. Accordingly the above italicized statement may also be interpreted as meaning that the contents of all the simplexes involved vanish.

Keeping $m = n+1$, and giving n successively the values $1, 2, 3, 4, \ldots, n$, we may derive from the identity (1) the following expressions for the respective magnitudes of the length of a segment in S_1, the area of a triangle in S_2, the volume of a tetrahedron in S_3, the hyper-volume of a penta-hedroid in S_4, \ldots, the content of a simplex in S_n:

$$\frac{\sigma_{1,1}^{1/2}}{2\sqrt{3}}, \frac{|\sigma_{1,1}, \sigma_{2,2}|^{1/2}}{24}, \frac{|\sigma_{1,1}, \sigma_{2,2}, \sigma_{3,3}|^{1/2}}{120\sqrt{5}}, \ldots, \frac{|\sigma_{1,1}, \sigma_{2,2}, \ldots, \sigma_{n,n}|^{1/2}}{n!(n+1)^{n-1/2}}.$$

The extension of the above italicized statement from S_{n-1} to S_{n-k} is an immediate consequence of the well known properties of orthogonal projections of linear spaces. The fundamental idea is that identity (1) holds for a smaller number of coordinates than n and hence it may be applied to the orthogonal projections of the m given points upon all of the

$$\binom{n}{n-k+1}$$

coordinate-\(S_{n-k+1}\)'s. In other words the original matrix is to be replaced by

\[
\begin{pmatrix}
 n \\
 n-k+1
\end{pmatrix}
\]

matrices having the same top row of \(m\) 1's while the remaining rows are composed of \(n-k+1\) of the original rows of \(x\)'s. There will now be

\[
\begin{pmatrix}
 n \\
 n-k+1
\end{pmatrix}
\]

new systems of points,—one in each coordinate-\(S_{n-k+1}\),—to all of which the above italicized test must be applied. The orders of the \(U_n\)'s and \(D_r\)'s of formula (1) will be \(n-k+1\) and \(n-k+2\) respectively. Without further comment it should be perfectly clear that necessary and sufficient conditions that any number of real points in \(n\)-dimensional flat space shall lie in an \((n-k)\)-dimensional flat space are that all the

\[
\begin{pmatrix}
 n \\
 n-k+1
\end{pmatrix}
\]

determinants \(U\) of order \(n-k+1\) in the \(\sigma\)'s shall vanish while one, at least, of the determinants \(U\) of order \(n-k\) shall be finite.

The last sentence may be stated in terms of the rank of the \(U\) of order \(n\).* Incidentally the writer has found it possible to express the general criteria analytically in terms of only two determinants involving polynomial constituents composed of the \(\sigma\)'s.

Yale University

* G. Kowalewski, Determinantentheorie, § 52.