ON THE CORRESPONDENCE BETWEEN SPACE
SEXTIC CURVES AND PLANE QUARTICS
IN FOUR-SPACE*

BY B. C. WONG

This paper proposes to show by means of an involutorial quartic transformation in space of four dimensions a certain correspondence between certain space sextics and plane quartics. The transformation is effected by four quadric varieties.† To a point is made to correspond the intersection of its polar spaces with respect to the quadric varieties. If a point describes a line, a plane, or a 3-space, the corresponding point describes a quartic curve, a two-dimensional surface of order 6, or a three-dimensional variety of order 4, respectively. The locus of points which transform into lines is the surface J_2^{10} (of dimension 2 and degree 10) and the locus of these lines is J_3^{15} (of dimension 3 and degree 15). The J_3^{15} is the Jacobian of the $|M_3^4|$, images of the S_3 of S_4. The former is the four-fold two-dimensional surface on the latter and the latter is generated by the quadri-secants of the former.

Consider a fixed plane σ_2. It has 10 points P in common with J_2^{10}. The surface Σ_2^6 into which σ_2 transforms is intersected by a 3-space S_3 in a sextic curve Γ_1^6. The quartic variety S_3^4 corresponding to S_3 is met by σ_2 in a quartic γ_1^4 through P. The transform of γ_1^4 is a degenerate curve of the 16th degree in 4-space made up of 10 lines corresponding to the 10 points P and the sextic Γ_1^6 which is in S_3. This sextic Γ_1^6 is said to correspond to the plane quartic γ_1^4.

The 10 points P in σ_2 determine ∞^4 quartics; correspondingly, Σ_2^6 determines with the ∞^4 3-spaces in 4-space ∞^4 sex-

* Presented to the Society, San Francisco Section, April 3, 1926.
tic curves. Two 3-spaces S_3 and S'_3 transform into two hyperquartic surfaces S_3^4 and $S_3'^4$ which determine with σ_2 two quartics γ_1^4 and $\gamma_1'^4$ through the 10 points P and 6 other points Q. The points Q are, in fact, the intersections of σ_2 and the transform Σ_2^6 of the plane σ_2' determined by S_3 and S'_3. These 16 points P and Q form the basis of a pencil of quartic curves; correspondingly, the plane σ_2' is the basis of a pencil of 3-spaces each containing a sextic curve.

Of all the quartics through the points P in σ_2 some are unicursal and others are of deficiency 1, 2, 3. Suppose γ_1^4 is trinodal. Then the corresponding Γ_1^6 has three real (as distinguished from "apparent") double points and is the intersection of Σ_2^6 and a triply tangent space S_3. The number of apparent double points is 7. Similarly, a 3-space which is simply-, or doubly-tangent to Σ_2^6 gives rise to a sextic with one, or two nodes corresponding to a quartic in σ_2' with one, or two nodes respectively.

Among the quartics through P in σ_2 there are many degenerate ones, and these transform into degenerate space sextics. Of interest are those made up of pairs of conics, each pair having one component through five points of P and the other through the remaining five. The sextic corresponding to such a degenerate quartic is composed of two space cubics having in common four points which are the transforms of the four points of intersection of the two conics. Its space is quadruply tangent to Σ_2^6. Through the 10 points P, 252 conics can be drawn and they form 126 pairs of degenerate quartics of this type. Hence there are 126 3-spaces which are quadruply tangent to Σ_2^6, each containing a Γ_1^6 composed of two twisted cubics with four points in common.

It is to be noted that there are other quadruply tangent 3-spaces but they intersect Σ_2^6 in different types of degenerate sextics. For example, a quartic in σ_2 composed of a line through two points of P and a nodal cubic through the remaining eight gives rise to a sextic whose components are a conic and a twisted quartic with a real double point having three points in common. These three common points and the node on the
quartic are the four points of contact between the 3-space containing the sextic and $\Sigma _2^6$. Or, it may happen that 6 of the 10 points P lie on a conic $\kappa ^2$. This conic $\kappa ^2$ and any conic $\kappa ^2'$ through the remaining 4 points of P form a degenerate quartic whose transform is a degenerate sextic made up of a conic K_1^2 and a quartic K_1^4 having four points in common. If $\kappa ^2'_{2}$ is a line pair, then the quartic K_1^4 decomposes into a pair of conics with one point in common. Each of these two component conics has two points in common with K_1^2. The sextic is now composed of three conics and its space is quintuply tangent to $\Sigma _2^6$.

Now suppose the 3-space S_3 contains the plane $\sigma _2$. It intersects its own transform, M_3^4, in a quartic surface J_2^4; J_2^4 is the Jacobian quartic surface of the four quadric surfaces in which S_3 meets the four quadric varieties used to effect the transformation. The transform $\Sigma _2^6$ of $\sigma _2$ meets S_3 in the sextic whose points are in one to one correspondence with the quartic $\gamma _1^4$ common to $\sigma _2$ and J_2^4. The quartic $\gamma _1^4$ passes through the 10 points P and the 6 points Q which are on $\Sigma _2^6$ and therefore on the sextic $\Gamma _1^6$. As $\sigma _2$ varies in S_3, $\Gamma _1^6$ varies on J_2^4. Corresponding to the $\infty ^3$ plane sections of J_2^4 there are $\infty ^3$ sextics on J_2^4. Any pencil of planes in S_3 gives rise to a pencil of sextics through four points which correspond to the four points in which the axis of the pencil of planes meets J_2^4. A further discussion of this configuration is unnecessary as it is a configuration in a three-dimensional space and is well known.†

THE UNIVERSITY OF CALIFORNIA

* The totality of sextics on J_2^4 is $\infty ^6$ but only $\infty ^3$ of them correspond to plane quartics whose planes lie within S_3 and the others correspond to plane quartics whose planes are not contained in S_3.

† Jessop, *Quartic Surfaces*, Cambridge Press, 1916, Chapter IX.