ON THE INTEGRO-DIFFERENTIAL EQUATION OF
THE BÔCHER TYPE IN THREE-SPACE

BY G. E. RAYNOR

1. Introduction. Bôcher has shown* that if a function
\(f(x, y) \) is continuous and has continuous first partial derivatives
in a region \(R \) and satisfies the condition
\[
\int_C \frac{\partial f}{\partial n} \, ds = 0
\]
for every circle \(C \) lying entirely in \(R \), then \(f(x, y) \) is harmonic
at each interior point of \(R \). Bôcher treats only functions
in two variables and by a method which cannot be directly
extended to three-space.

It is the purpose of the present note to show, by a simple
modification of the second part of Bôcher's argument,
that this result may at once be extended to three-space, and
also to investigate the nature of the function \(f \) if Bôcher's
condition of continuity is somewhat weakened. We shall
treat explicitly functions in three variables only, but it will
easily be seen that with a slight modification the statements
of Theorem II are applicable to two-space as well.

Theorem I. If a function \(f(x, y, z) \) is continuous, and
has continuous first partial derivatives in a connected finite
region \(R \), and is such that the surface integral \(\int_S (\partial f/\partial n)ds \)
vanishes when taken over every sphere \(S \) lying in \(R \), then at
each interior point of \(R \), \(f \) is harmonic; that is, it satisfies
Laplace's equation
\[
\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0
\]
at each interior point of \(R \).

In the preceding integral, as well as in what follows, the derivative $\frac{df}{dn}$ is to be taken either toward the interior of S, or toward the exterior of S, throughout the region of integration. Let P be any interior point of R and consider two spheres S_1 and S_2 of radii r_1 and $r_2 < r_1$ with centers at P. By hypothesis, we have

$$\int_S \frac{df}{dn} \, ds = 0;$$

or, setting $ds = r^2 \, d\omega$, where $d\omega$ is the element of area on the unit sphere with center P,

$$\int_S \frac{df}{dn} \, d\omega = 0.$$

It follows that

$$\int_{r_2}^{r_1} \, dr \int_S \frac{df}{dn} \, d\omega = 0.$$

Because of the continuity of f and its derivatives the order of integrations in the above integral may be inverted and we have

$$\int_{S_1} f \, d\omega - \int_{S_2} f \, d\omega = 0.$$

Let $f(P)$ be the value of f at the point P. Then since f is continuous at P we obtain from (2) by letting r_2 approach zero,

$$f(P) = \frac{1}{4\pi} \int_{S_1} f \, d\omega = \frac{1}{4\pi r_1^2} \int_{S_1} f \, ds.$$

We thus see that our function f possesses the so-called mean-value property, that is, its value at the center of any sphere is the mean of its values on the surface of the sphere.

Consider now the function F which takes the same values as f on S_1 and which is harmonic interior to S_1. This function exists and can be expressed as a Poisson integral. It is well known that F also possesses the mean-value prop-
ergy and hence so also does the difference \(f - F \). But a continuous function having the mean value property in a closed region \(R \) must take its greatest and least values on the boundary of \(R \). Since the difference \(f - F \) is identically zero on \(S_1 \) it follows that it is zero everywhere within \(S_1 \) and hence \(f \) must be harmonic at \(P \) as was to be proved.

It is evident that the original hypothesis that

\[
\int \frac{\partial f}{\partial n} ds = 0
\]

about every sphere in \(R \) is unnecessarily broad. All that is needed in the above proof is that each point \(P \) may be surrounded by a region, no matter how small, which is such that the above integral vanishes when taken over every sphere lying entirely within it.

2. A More General Theorem. We shall now weaken the original condition of continuity on \(f \) and suppose that it is continuous at every interior point of \(R \) except possibly at a finite number of points \(P_1, P_2, \ldots, P_n \). We shall refer to these exceptional points in the sequel as the points \(P_i \). Our other condition on \(f \) now takes the form "about each interior point of \(R \) there exists a region \(M \) which is such that in its interior \(f (\partial f/\partial n)ds \) evaluated over every sphere which lies in \(M \) and does not pass through one of the \(P_i \) is zero."

It is sufficient that if \(M \) contains one of the exceptional points, it contains only one.

That \(f \) is harmonic at every interior point \(P \) of \(R \) other than the \(P_i \) follows readily. About each of the \(P_i \) as center draw a small sphere \(S_i \) which does not contain \(P \). Then the region bounded by the \(S_i \) and the boundary of \(R \) is a region of the type considered in Theorem I from which it follows that \(f \) is harmonic at \(P \). It thus remains only to consider the nature of \(f \) in the neighborhood of any one of the \(P_i \).

In a paper presented to the Society, October 31, 1925, the writer has shown that if a function is harmonic at every point
in the deleted neighborhood of a point \(P \) it may be expressed in the form
\[
\frac{1}{r} + \Phi(x, y, z) + V(x, y, z)
\]
in this neighborhood. In this expression \(c \) is a constant, \(r \) the distance from \(P \) to \((x, y, z)\), \(V \) a function harmonic everywhere in the neighborhood of \(P \) as well as at \(P \) itself and \(\Phi \) a function harmonic in the deleted neighborhood and such that it is either identically zero or else there exist modes of approach to \(P \) for which \(\Phi \) will tend toward plus infinity and also modes of approach for which it will tend toward minus infinity; \(\Phi \) also possesses the property that its integral over the surface of any sphere with \(P \) as center vanishes.

Consider now two spheres \(S_1 \) and \(S_2 \) with center \(P \) and radii \(r_1 \) and \(r_2 < r_1 \). Apply Green's formula to the functions \(\Phi \) and \(1/r - 1/r_1 \) for the region bounded by \(S_1 \) and \(S_2 \) and we have
\[
\int_{S_1} \left\{ \left(\frac{1}{r} - \frac{1}{r_1} \right) \frac{\partial \Phi}{\partial n} - \frac{\partial}{\partial n} \left(\frac{1}{r} - \frac{1}{r_1} \right) \Phi \right\} ds = 0,
\]
where the normal derivatives are taken toward the interior of the region \(S_1 \) \(S_2 \). Remembering that the integral of \(\Phi \) over any sphere with center \(P \) is zero and since \(1/r - 1/r_1 \) is zero on \(S_1 \) and constant on \(S_2 \) we have from the above equation
\[
(3) \quad \int_{S_2} \frac{\partial \Phi}{\partial n} ds = 0.
\]
Since \(S_2 \) is any sphere interior to \(S_1 \) it follows that the integral of the normal derivative of \(\Phi \) over any sphere with center \(P \) and radius less than \(r_1 \) vanishes. The same result could of course be obtained from the property \(\int_{S}\Phi ds = 0 \) by considering the continuity of \(\Phi \) and using the theorem concerning the differentiation of a definite integral. In (3) because of the continuity of the first partial derivatives of \(\Phi \) in the deleted neighborhood of \(P \) we may take the normal derivative \textit{either} toward the interior or toward the
exterior normal of S_2 throughout the region of integration. Hence if the function

$$f = \frac{1}{r} + \Phi + V$$

is to be such that the integral of its normal derivative vanishes when taken over spheres in the neighborhood of P, the constant c must be zero. Conversely we have shown by the above argument that if c is zero $\int (\partial f / \partial n) ds$ will vanish when taken over every sphere with center P and of radius $r < r_1$. We may now state the following theorem.

Theorem II. Every function which satisfies the conditions of § 2 in a region R is harmonic at every interior point of R except possibly at the points P_i. In the neighborhood of each P_i, f is of the form $\Phi + V$. If $\Phi \equiv 0$, in the neighborhood of any P_i, P_i is at most a removable discontinuity. If $\Phi \neq 0$, f will be harmonic in the deleted neighborhood of P and will be such that for certain modes of approach to P it will tend toward plus infinity and for other modes to minus infinity.

It may be remarked in closing that although we have supposed $\int (\partial f / \partial n) ds$ to vanish only when taken over sufficiently small spheres with P_i as center it is now easy to prove that it will vanish when taken over any regular surface S in R which does not pass through one of the P_i. We need merely to surround each P_i in S by a sphere S_i lying entirely in S and use the fact that

$$\int \frac{\partial f}{\partial n} ds = 0$$

where the integral is taken over S and the spheres S_i. Then $\int_S (\partial f / \partial n) ds$ will vanish since the portion of (4) due to the S_i vanishes.