TWO-WAY CONTINUOUS CURVES*

BY G. T. WHYBURN

A continuous curve M will be said to be a two-way continuous curve, or to be "two-way continuous," provided it is true that between every two points of M there exist in M at least two arcs neither of which is a subset of the other. A point P of a continuum M is a cut point of M provided it is true that the point set $M - P$ is not connected. Every point of a continuum M which is not a cut point of M will be called a non-cut point of M.

In a paper Concerning continua in the plane, among other results, I have established the following theorems which will be used in the proofs given in this paper.

I. If K denotes the set of all the cut points of a continuum M, then every bounded, closed, and connected subset of K is a continuous curve which contains no simple closed curve.

II. Every cut point of the boundary of a complementary domain of a bounded continuum M is a cut point also of M.

III. If K, H, and N, respectively, denote the set of all the cut points, end points, and simple closed curves of a continuous curve M, then $K + H + N = M$.

IV. If N denotes the point set consisting of all the simple closed curves contained in a continuous curve M, then every connected subset of $M - N$ is arcwise connected.

These results will be referred to by number as here listed. We shall now prove the following additional theorems.

* Presented to the Society, May 1, 1926.
† Recently submitted for publication in the Transactions of this Society.
‡ For a definition of this term see R. L. Wilder, Concerning continuous curves, Fundamenta Mathematicae, vol. 7 (1925), p. 358.
THEOREM 1. In order that a continuous curve M should be two-way continuous it is necessary and sufficient that every simple continuous arc of M should contain a subarc which belongs to some single simple closed curve of M.

THEOREM 2. In order that a continuous curve M should be two-way continuous it is necessary and sufficient that every arc of M should contain a non-cut point of M.

Proof. The condition is sufficient. Let A and B denote any two points of a continuous curve M which satisfies the condition. The curve M contains one arc t from A to B. And from our hypothesis it follows that t contains an interior point O which is a non-cut point of M. It follows from a theorem of R. L. Moore's* that $M - O$ contains an arc s from A to B. Since s does not contain the point O of t, it follows that $t \neq s$, and therefore, that M is two-way continuous.

The condition is also necessary. Let t denote any definite arc of a two-way continuous curve M. By Theorem 1, t contains a subarc s which belongs to some simple closed curve J of M. It is a consequence of a theorem of R. L. Moore's† that J contains not more than a countable number of cut points of M. Since s belongs to J and contains uncountably many points altogether, it follows that s, and hence also t, must contain at least one non-cut point of M.

THEOREM 3. In order that a continuous curve M should be two-way continuous it is necessary and sufficient that the set K of all the cut points of M should contain no continuum.

Proof. That the condition is sufficient is almost a direct consequence of Theorem 2. For, since by hypothesis K can contain no continuum, therefore it can contain no arc.

† Concerning the cut points of continuous curves and of other closed and connected point sets, Proceedings of the National Academy, vol. 9 (1923), pp. 101–106, Theorem B*.
Hence, every arc of \(M \) must contain a non-cut point of \(M \), and by Theorem 2, \(M \) is two-way continuous. The condition is also necessary. For suppose the set \(K \) of all the cut points of a two-way continuous curve \(M \) contains a continuum \(H \). Then by (I), \(H \) is a continuous curve. Hence, \(H \) contains at least one arc \(t \). But by Theorem 2, \(t \) must contain at least one non-cut point of \(M \). Thus the supposition that \(K \) contains a continuum leads to a contradiction.

Theorem 4. The boundary of every complementary domain of a two-way continuous curve is itself two-way continuous.

Proof. Let \(M \) denote the boundary of a complementary domain of a two-way continuous curve \(K \). Then \(M \) is a continuous curve.* Suppose, contrary to this theorem, that \(M \) is not two-way continuous. Then from Theorem 3 it follows that \(M \) must contain a continuum \(H \) every point of which is a cut point of \(M \). But by (II), every cut point of \(M \) is a cut point also of \(K \). And since \(K \) is two-way continuous, by Theorem 3, not every point of \(H \) can be a cut point of \(K \). Thus the supposition that \(M \) is not two-way continuous leads to a contradiction.

Theorem 5. If \(N \) denotes the point set consisting of all the simple closed curves contained in a two-way continuous curve \(M \), then \(M - N \) is totally disconnected.

Proof. Suppose \(M - N \) contains a connected set \(L \) consisting of more than one point. Then from (III) and (IV) it readily follows that \(L \) contains an arc \(t \) every point of which is a cut point of \(M \). But this is contrary to Theorem 2. It follows that \(M - N \) is totally disconnected.

Theorem 6. The boundary \(M \) of a complementary domain of a two-way continuous curve is the sum of two mutually exclusive point sets \(N \) and \(H \), where \(N \) is the sum of a countable

number of simple closed curves no two of which have more than one point in common, and H is a totally disconnected set of points every one of which is a limit point of N and is either a cut point or an end point of M.

Proof. By Theorem 4, M is a two-way continuous curve. Let G denote the collection of all the simple closed curves contained in M. R. L. Wilder* has shown that G is countable and that no two curves of G have more than one point in common. Let N denote the point set obtained by adding together all the curves of the collection G. Then let H denote the point set $M - N$. Since M is two-way continuous, it readily follows that every point of H is a limit point of N. By Theorem 5, H is totally disconnected, and by (III), every point of H is either a cut point or an end point of M. Hence, the sets N and H satisfy all the conditions of Theorem 6.

Theorem 7. In order that the boundary M of a complementary domain D of a continuous curve should be two-way continuous it is necessary and sufficient that M should contain a point set K such that (1) $D + K$ is uniformly connected im kleinen, and (2) every arc, if there be any, which K' (K plus all the limit points of K) contains, contains a non-cut point of M.

Proof. The condition is necessary. For let $K = M$. Clearly $D + K$ is uniformly connected im kleinen. And since K' is two-way continuous, it follows by Theorem 2 that every arc of K' contains a non-cut point of M. The condition is also sufficient. Let M denote the boundary of a complementary domain D of a continuous curve, and suppose that M contains a point set K satisfying conditions (1) and (2) in the statement of Theorem 7. Let A and B denote any two points of M. Now M contains one arc t from A to B. Either t is a subset of K' or it is not. If t is a subset of K', then by hypothesis t contains an interior

point O which is not a cut point of M. Then by a theorem of R. L. Moore's, $M - O$ contains an arc from A to B which does not contain O, and which, therefore, is not a subset of t. Now if t is not a subset of K', then since K' is closed, it readily follows that t contains an arc s which contains no point of K'. Let X and Y denote the end points and O an interior point of s. Let C be a circle having O as center and not enclosing any point of K. Within C and on s there exist points E, U, W, and G in the order X, E, U, O, W, G, Y. And within C there exist arcs EFG and UVW having only their end points in common with s and such that if D_1 and D_2 denote the interiors of the closed curves $UVWOU$ and $EUOWGFE$ respectively, then D_1 and D_2 are mutually exclusive domains each of which lies within C. Now since $D + K$ is uniformly connected in kleinien, and C encloses no point of K, it readily follows that not both D_1 and D_2 can contain a subset of D which has O for a limit point. Hence, either D_1 or D_2 must contain a segment QST of an arc QST which has its end points on s in the order X, Q, O, T, Y and such that if R denotes the interior of the closed curve $QOTSQ$, then R contains no point whatever of $D + M$. Hence, R lies wholly in some complementary domain G of $D + M$. It follows from a theorem of R. L. Moore's† that the boundary J of G is a simple closed curve. The curve J contains the arc QOT of t. It follows that M contains an arc from A to B which does not contain the point O of t, and which, therefore, is not a subset of t. Hence, in any case, M contains two arcs from A to B neither of which is a subset of the other, and therefore M is two-way continuous.

THE UNIVERSITY OF TEXAS

* Concerning continuous curves in the plane, loc. cit.
† Concerning continuous curves in the plane, loc. cit., Theorem 4.