A THEOREM ON FACTORIZATION*

BY D. N. LEHMER

In a note in this Bulletin\(^\dagger\) I observed that if \(R = pq\) is the product of two odd factors whose difference is less than twice the fourth root of \(R\) then the factors of \(R\) are obtainable directly from the expansion of \(R^{1/2}\) in a continued fraction. This theorem comes from the fact that in view of a theorem due to Lagrange, \((p - q)^2/4\) will appear as a denominator of a complete quotient in that expansion, and that therefore the diophantine equation \(x^2 - Ry^2 = (p - q)^2/4\) will have the integral solution \(x = \frac{1}{2}(r + q), y = 1\).

The object of the present note is to point out that the method is of much wider application than the above statement would indicate. For consider the identity

\[
\left(\frac{mp + nq}{2}\right)^2 - \left(\frac{mp - nq}{2}\right)^2 = mn pq.
\]

From this it appears that if \(mn\) is a square and if \(m\) and \(n\) are both odd or both even, we will have an integral solution of the equation

\[
x^2 - Ry^2 = \frac{1}{4}(mp - nq)^2,
\]

namely

\[
x = \frac{1}{2}(mp + nq), \quad y = (mn)^{1/2}.
\]

By Lagrange's theorem, therefore, if \(mp - nq < 2R^{1/4}\) one of the denominators in the expansion of \(R^{1/2}\) will certainly be \((mp - nq)^2/4\) and since the numerator of the preceding convergent will be \((mp + nq)/2\) these two numbers will serve to furnish the factors \(p\) and \(q\) of \(R\). We have then the following theorem.

* Presented to the Society, San Francisco Section, October 30, 1926.
THEOREM. If $R = pq$ is the product of two odd factors, and if two numbers m and n, both even or both odd, are obtainable such that their product is a square and also such that $mp - nq < 2R^{1/4}$ then the continued fraction for $R^{1/2}$ will furnish without trial the factors p and q of R.

It should be noted that if the difference $mp - nq$ is less than the fourth root of R the restriction that m and n be both even or both odd may be disregarded, for in that case $2m$ and $2n$ are suitable multipliers. Also it is worth noting that the square denominator will appear in the complete quotient when the denominator of the preceding convergent is $(mn)^{1/2}$. This means that in the original theorem the desired square is under the third complete quotient.

An example will indicate the method of attacking a number by this method. Let $A = 1564.08789$. The square root expansion gives the following series of denominators for the complete quotients: 1, 8753, 15013, 3740, 529, · · · , the partial quotients being 12506, 2, 1, 6, 47, · · · . The convergent preceding the complete quotient with the square denominator 529 is found to be 250127/20. We have then

\[
\frac{mp + nq}{2} = 250127, \quad \frac{mp - nq}{2} = 23.
\]

Whence

\[
mp = 250150, \quad nq = 250104.
\]

Since, now, $pq = A$ and $mn = 20^2 = 400$ it is easily found that $p = 31263$, $q = 5003$, $m = 8$, $n = 50$. The success of the method was due to the fact that the difference $mp - nq = 46$, which is less that $2A^{1/4} = 222$. In this example also we see that $36p - 225q = 207$, which is also less than 222; but since here the values of m and n differ in parity, these values will not appear in the expansion. Similarly the difference $mp - nq = 23$ for $m = 4$, $n = 25$, and m and n being different in parity these values will also not appear in the expansion. But since 23 is less than $A^{1/4}$, we will have $2m$ and $2n$ for suitable values, and these are indeed the ones that do appear.

THE UNIVERSITY OF CALIFORNIA