A NEW CHARACTERIZATION OF PLANE CONTINUOUS CURVES*

BY W. L. AYRES

A number of authors† have given necessary and sufficient conditions that a bounded continuum be a continuous curve. However new conditions are always of interest as no one characterization applies without difficulty to all problems. It is the purpose of this paper to give a new necessary and sufficient condition that a bounded plane continuum be a continuous curve. Also this gives a condition under which a subcontinuum of a continuous curve is itself a continuous curve. Finally we prove a new property of continuous curves.

THEOREM I. In order that a continuum \(N\), which is a subset of a plane continuous curve \(M\) and such that \(M - N\) consists of a finite number of maximal connected subsets‡, be a continuous curve, it is necessary and sufficient that if \(P_1, P_2, P_3, \ldots\) is any sequence of distinct points of a maximal connected subset of \(M - N\) which has a sequential limit point \(P\), then there exists an increasing sequence of positive integers \(n_1, n_2, n_3, \ldots\)

* Presented to the Society, October 30, 1926.
‡ A point set \(K\) which is a subset of a point set \(M\) is said to be a proper subset of \(M\) if \(M - K\) is not vacuous. A connected subset \(K\) of a point set \(M\) is said to be a maximal connected subset of \(M\) if \(K\) is not a proper subset of any connected subset of \(M\).
and a set of arcs of $M - N$, $P_{n_1}P_{n_2}$, $P_{n_2}P_{n_3}$, \ldots, such that the set $P + \sum_{i=1}^{\infty} P_{n}P_{n_{i+1}}$ is closed.

Proof. A. The condition is necessary. Let P_1, P_2, P_3, \ldots be any sequence of points of a maximal connected subset D of $M - N$ which has a sequential limit point P. There are two cases to consider.

(a). If P is a point of $M - N$, D contains P and there exists a circle C_1 with center at P which encloses no point of N. We may suppose that for every i, $P_i \not\subseteq P$, for if any P_i were P we could drop this point from the sequence and consider the remainder. Since M is connected im kleinen, there exists a circle C_2 with center at P such that $r_i \leq r_i/2$, where r_i denotes the radius of C_i, and such that every point of M in the interior of C_2 can be joined to P by an arc* of M which lies wholly in the interior of C_1. Let n_1 be the smallest integer so that P_{n_1} is interior to C_2. In general there exists a circle C_{i+1} with center at P such that $r_{i+1} \leq r_i/2$ and $P_{n_{i-1}}$ lies in the exterior of C_{i+1} and such that every point of M in the interior of C_{i+1} can be joined to P by an arc of M which lies wholly in the interior of C_i. Let n_i be the smallest integer such that P_{n_i} lies in the interior of C_{i+1} and let $P_{n_i}P$ denote the arc of M (actually of $M - N$) whose existence is shown above. For every i, the set $P_{n_i}P + P_{n_{i+1}}P$ contains an arc $P_{n_i}P_{n_{i+1}}$ from P_{n_i} to $P_{n_{i+1}}$. Since every arc $P_{n_i}P_{n_{i+1}}$ lies in the interior of the circle C_i and the numbers r_i approach 0 as i increases, the set $P + \sum_{i=1}^{\infty} P_{n_i}P_{n_{i+1}}$ is closed.

(b). If P is a point of N, let C_1 be a circle with center at P and radius r so small that N and D contain points exterior to C_1. This is possible unless N is identical with M and in this case our theorem is obvious. Let $D_{11}, D_{12}, D_{13}, \ldots$ be the maximal connected subsets of $D \cdot I(C_1)$.

* That this can be done by an arc, see J. R. Kline, *Concerning the approachability of simple closed and open curves*, Transactions of this Society, vol. 21 (1920), page 453 and footnote.

† If C is a circle, $I(C)$ denotes the interior of C. If A and B are point sets, $A \cdot B$ denotes the set of points common to A and B.
We shall show that one of these sets, which we will denote by D_1, contains infinitely many of the points P_i. If this is not true, then if C_2 denotes the circle with center at P radius $r/2$, for infinitely many values of i, D_{1i} has a point within C_2 and C_1 contains a limit point of D_{1i}. Thus infinitely many of the sets D_{1i} are of diameter greater than $r/4$. But this contradicts the theorem that if $M+C_1$ and $N+C_1$ are continuous curves and $N+C_1$ is a subset of $M+C_1$ then $M+C_1-(N+C_1)$ cannot contain more than a finite number of maximal connected subsets of diameter greater than $r/4$.*

Let n_1 be the smallest integer such that D_1 contains P_{n_1}. Similarly one, D_2, of the maximal connected subsets of $D_1 \cdot I(C_2)$ contains infinitely many of the points P_i. Let n_2 be the smallest integer greater than n_1 such that D_2 contains P_{n_2}. In general let $C_j(j=1, 2, 3, \cdots)$ be a circle with center at P and radius r/j and let D_j be a maximal connected subset of $D_{j-1} \cdot I(C_j)$ which contains infinitely many points of the sequence $[P_i]$. Let n_j be the smallest integer greater than n_{j-1} such that P_{n_j} lies in D_j. For every j, D_j contains an arc $P_{n_j}P_{n_{j+1}}$.† Since for every j, the arc $P_{n_j}P_{n_{j+1}}$ lies interior to C_j we see easily that the set $P + \sum_{j=1}^{\infty} P_{n_j}P_{n_{j+1}}$ is closed.

B. The condition is sufficient. If N is not a continuous curve there exist‡ two concentric circles K_1 and K_2 and a countable infinity of continua \overline{N}, N_1, N_2, N_3, \cdots, such that (1) each of these continua belongs to N, contains a point on K_1 and a point on K_2 and is a subset of the set H which is composed of K_1+K_2+I, I denoting the annular domain between K_1 and K_2, (2) no two of these continua have a point in common and, indeed, no one of them except possibly \overline{N} is a proper subset of any connected subset of $N \cdot H$.

* See the abstract of my paper, Concerning the arcs and domains of a continuous curve, this Bulletin, vol. 32 (1926), p. 37.
‡ See Report, p. 296.
(3) the set \(\overline{N} \) is the sequential limiting set of the sequence of sets \(N_1, N_2, N_3, \ldots \). For each \(i \), let \(A_i \) and \(B_i \) be points of \(K_1 \cdot N_i \) and \(K_2 \cdot N_i \) respectively. There exist arcs \(X_1 Y_1 A_i \) and \(X_2 Y_2 B_i \) of \(K_1 \) and \(K_2 \) and an increasing sequence of integers \(n_1, n_2, n_3, \ldots \), such that \(X_1 Y_1 A_i \) contains \(A_{n_i} \) for every \(i \) and in the order \(X_1 Y_1 A_{n_1} A_{n_2} \ldots A \) and \(X_2 Y_2 B_i \) contains \(B_{n_i} \) for every \(i \) and in the order \(X_2 Y_2 B_{n_1} B_{n_2} \ldots B \).

Let \(P \) denote a point of \(\overline{N} \) which lies in \(I \). There exists a circle \(C_1 \) with center at \(P \) such that \(C_1 \), together with its interior, lies in \(I \). Let \(r_1 \) be the radius of \(C_1 \). Since \(M \) is connected im kleinen at \(P \) there exists in any circle \(C_i \) a concentric circle \(\overline{C}_i \) such that every point of \(M \) within \(\overline{C}_i \) can be joined to \(P \) by an arc of \(M \) lying wholly within \(C_i \). Let \(N_{11} \equiv N_{n_{j1}} \), where \(j \) has the smallest value such that \(N_{n_j} \) contains a point \(Q_1 \) within \(\overline{C}_1 \). There exists an arc \(PQ_1 \) of \(M \) lying wholly in \(C_1 \). The arc \(PQ_1 \) from \(P \) to \(Q_1 \) contains a first point \(E_1 \) in common with \(N_{11} \) and the arc \(E_1 P \), a subset of \(Q_1 P \), has a first point \(F_1 \) in common with \(\overline{N} \). The set \(\{E_1 F_1\} \) contains a point \(P_1 \) of \(M - N \). Let \(C_2 \) be a circle with center at \(P \) and radius \(r_2 \equiv r_1/2 \) such that \(P_1 \) and \(N_{11} \) lie in the exterior of \(C_2 \). Let \(N_{12} \equiv N_{n_{j2}} \), where \(j \) has the smallest value such that \(N_{n_j} \) contains a point \(Q_2 \) within \(\overline{C}_2 \). Let us determine a point \(P_2 \) of \(M - N \) as above. Continue this process indefinitely each time taking \(C_i \) with center at \(P \) and radius \(r_i \equiv r_{i-1}/2 \) and such that \(P_{i-1} \) and \(N_{1i-1} \) lie outside \(C_i \). Thus we obtain an infinite sequence of points \(P_1, P_2, P_3, \ldots \), and continua \(N_{11}, N_{12}, N_{13}, \ldots \), such that (1) \(P_i \) belongs to \(M - N \) and lies interior to \(C_i \) and thus \(P \) is the sequential limit point of the sequence \([P_i]\), (2) \(\{E_i F_i\} \) contains \(P_i \), where \(C_i \) encloses \(E_i F_i \), and \(\{E_i F_i\} \) contains no point of \(N_{1i} + \overline{N} \).

Since \(M - N \) consists of only a finite number of maximal connected subsets one of these must contain infinitely many of the points \([P_i]\) say \(\overline{P}_1, \overline{P}_2, \overline{P}_3, \ldots \). For each \(i \), let \(D_i \) be the maximal connected subset of \(M + K_1 + K_2 - (\overline{N} + \overline{N}_{1i}) \).

* If \(AB \) is an arc from \(A \) to \(B \) then \(\{AB\} \) denotes \(AB - (A + B) \).
+K_1+K_2)\), which contains \(P_i\). We see easily that there exists an integer \(t_2\) such that \(\overline{P}_1\) does not lie in \(D_{t_2}\). Then any arc of \(M-N\) from \(\overline{P}_{i_1}\) to \(\overline{P}_{i_2}\) must contain a point of either \(K_1\) or \(K_2\). There exists an integer \(t_2>2\) such that \(D_{t_2}\) does not contain \(\overline{P}_{i_2}\). In general there exists an integer \(t_i>t_{i-1}\) such that \(D_{t_i}\) does not contain \(\overline{P}_{i_i}\) and thus any arc of \(M-N\) from \(\overline{P}_{i_{i-1}}\) to \(\overline{P}_{i_i}\) must contain a point of \(K_1\) or \(K_2\). Let \(P_i=\overline{P}_{i_i}\). Then if \(k_1, k_2, \ldots\) is an increasing sequence of positive integers, the set \(\overline{N}\) must contain a limit point of the set \(P_1+\sum_{i=1}^{\infty} P_{k_i} P_{k_{i+1}}\) which lies on \(K_1\) or \(K_2\) and thus the set cannot be closed. But this set is closed by hypothesis. Thus the condition is sufficient.

Theorem II. In order that a bounded plane continuum \(M\) be a continuous curve, it is necessary and sufficient that (1) for any given positive number \(\epsilon\) there are not more than a finite number of complementary domains of \(M\) of diameter greater than \(\epsilon\); (2) if \(P_1, P_2, P_3, \ldots\) is any sequence of distinct points of a complementary domain \(D\) of \(M\) which has a sequential limit point \(P\), then there exists an increasing sequence of positive integers, \(n_1, n_2, n_3, \ldots\), and a sequence of arcs of \(D\), \(P_{n_1} P_{n_2}, P_{n_2} P_{n_3}, P_{n_3} P_{n_4}, \ldots\), such that the set \(P_1+\sum_{i=1}^{\infty} P_{n_i} P_{n_{i+1}}\) is closed.

Proof. The necessity of condition (1) has been proved by Schoenflies. The necessity of condition (2) can be proved exactly as in Theorem I since no property of the continuous curve \(M\) was used that is not also a property of the entire space. The sufficiency of the conditions is proved as in Theorem I except that the fact that some one complementary domain of \(M\) contains infinitely many of the points \(P_1, P_2, P_3, \ldots\), which are chosen in the course of the argument, follows from condition (1) rather than the condition \(M-N\) consists of a finite number of maximal connected subsets.

* If \(\overline{P}_i=P_i\), then \(N_{i+1}\) denotes \(N_i\).
† For the proof that such an arc exists, see R. L. Moore, Concerning continuous curves in the plane, loc. cit.
‡ See Report, pp. 290, 291.
THEOREM III. If M is a plane continuous curve then M cannot contain, for any positive number ϵ, an infinite number of mutually exclusive continua M_1, M_2, M_3, \cdots, such that

(1) the diameter of each set M_i is greater than ϵ, (2) $M - M_i$ is closed except for a set K_i and if η is any positive number there exists an integer n_η so that if $i > n_\eta$ then K_i can be enclosed in two circles each of radius less than η.

PROOF. Suppose that there exists a positive number ϵ and a continuous curve M such that M contains an infinite number of continua M_1, M_2, M_3, \cdots, which satisfy restrictions (1) and (2) of the theorem. From condition (2) it follows that we may divide each set K_i into two subsets K_{1i} and K_{2i} such that

$$\lim_{i \to \infty} d(K_{1i}) = 0 \text{ and } \lim_{i \to \infty} d(K_{2i}) = 0.$$

For each i and j ($i = 1, 2, 3, \cdots, j = 1, 2$) let A_{ij} be a point of K_{ij}, unless K_{ij} is vacuous. For no value of i can both K_{1i} and K_{2i} be vacuous. Several cases arise here according to the existence or non-existence of the various points A_{ij} but we can see easily that there exist a point A or two points A and B and an increasing sequence of integers n_1, n_2, n_3, \cdots, such that either (1) K_{1n_i} is vacuous for each i, and A is the sequential limit point of $[A_{2n_i}]$, (2) K_{2n_i} is vacuous for each i and A is the sequential limit point of $[A_{1n_i}]$, (3) all of the points of the sequences $[A_{1n_i}]$ and $[A_{2n_i}]$ exist and A is the sequential limit point of each sequence, or (4) all of the points of the sequences $[A_{1n_i}]$ and $[A_{2n_i}]$ exist and A and B are the sequential limit points of the sequences $[A_{1n_i}]$ and $[A_{2n_i}]$ respectively ($A \neq B$). For cases (1), (2) and (3), let $t = \epsilon$; for case (4) let $t = d(A, B)$. By condition (2) of the hypothesis of the theorem, there exists an integer k_1 so that if $i > k_1$ then

$$d(K_{1n_i}) < t/12 \quad \text{and} \quad d(K_{2n_i}) < t/12.$$

* If K is a set of points the notation $d(K)$ denotes the diameter of K. If A and B are two points the notation $d(A, B)$ denotes the distance from A to B.
Also there exists an integer k_2 so that if $i > k_2$ then either

Case (1) $d(A_{2ni}, A) < t/12$,
or

Case (2) $d(A_{1ni}, A) < t/12$,
or

Case (3) $d(A_{1ni}, A) < t/12$ and $d(A_{2ni}, A) < t/12$,
or

Case (4) $d(A_{1ni}, A) < t/12$ and $d(A_{2ni}, B) < t/12$.

In any case if $k_3 = k_1 + k_2$ and $i > k_3$ then the circle C_1 with center at A and radius $t/6$, or the circles C_1 and C_2 with centers at A and B and radii $t/6$, enclose every point of K_{ni}. For every $i > k_3$, M_{ni} contains a point p_i such that $d(A, p_i) > t/3$ and $d(B, p_i) > t/3$ (if B exists). The sequence $M_{n_1}, M_{n_2}, M_{n_3}, \ldots$, contains a subsequence M_1, M_2, M_3, \ldots, such that (1) for every i, if $M_i = M_{nj}$ then $j > k_3$, (2) for every i, if $M_i = M_{nj}$ and $M_{i+1} = M_{nm}$ then $j < m$, (3) the points p_1, p_2, p_3, \ldots have a sequential limit point P. It follows that M contains P, that $d(P, A) \geq t/3$ and $d(P, B) \geq t/3$ (if B exists) and that if C_3 is a circle of radius $t/6$ with P as a center then no point of any set K_i is within C_3. As M is connected im kleinen at P the circle C_3 encloses a concentric circle C_4 such that every point of M within C_4 can be joined to P by an arc of M which lies entirely in C_3. Let $ar{p}_s$ be the first point of the sequence $[\bar{p}_1]$ within the circle C_4. There exists an arc α from \bar{p}_s to P which lies wholly in C_3. Let $\alpha_1 = M_s \cdot \alpha$ and $\alpha_2 = \alpha - \alpha_1$. As α is connected one of these sets must contain a limit point of the other. The set M_s, and consequently α_1, is closed. Then α_1 must contain a limit point q of α_2. As M_s contains α_1 and $M - M_s$ contains α_2, by definition q must belong to K_s. But no point of K_s is within C_3 while α is entirely within C_3. Thus the supposition that M contains an infinite set of this type has led to a contradiction.

The preceding theorem implies as an immediate corollary the following rather useful result.

* If $M_i = M_{nj}$, then P_i denotes p_{ni}.
THEOREM IV.* If M is a plane continuous curve then M cannot contain, for any positive number ϵ, an infinite number of arcs of diameter greater than ϵ which are mutually exclusive except possibly for common end-points and such that if α is any one of this set of arcs then $M - \{\alpha\}$ is closed.

That Theorem I no longer remains true when the condition that "$M - N$ consists of a finite number of maximal connected subsets" is removed, even with the addition of the condition that "for any positive number $\epsilon, M - N$ contains only a finite number of maximal connected subsets of diameter greater than $\epsilon," is shown by the following example. The modified conditions are necessary but not sufficient.

Let N denote the set of points consisting of the intervals from $(1, 0)$ to $(0, 0)$ and from $(0, 1)$ to $(0, 0)$ together with the intervals from $(1, 1/i)$ to $(0, 1/i)$ for every positive integer i. Let M be the set of points consisting of N together with the intervals from $(j/i, 1/i)$ to $(j/i, 0)$ for every positive integer $j < i$ and for every positive integer i. The modified conditions are then satisfied, but N is not a continuous curve.

Theorem III gives a necessary condition that a bounded continuum be a continuous curve. The following example shows that this condition is not sufficient:† Let M be an indecomposable continuum of diameter $\geq 2\epsilon$ and let $\eta < \epsilon/10$. Now suppose that M_1, M_2, M_3, \ldots is any sequence of mutually exclusive subcontinua of M of diameter greater than ϵ. As each set M_i is a proper subcontinuum of an indecomposable continuum it is a continuum of condensation of M.‡ Thus for each i, $K_i \equiv M_i$. Then no matter how large i is, K_i cannot be enclosed in two circles each of radius less than η. Thus M satisfies the condition but is not a continuous curve.

THE UNIVERSITY OF PENNSYLVANIA

* This theorem was presented to the Society October 31, 1925. I am indebted to Dr. H. M. Gehman for the suggestion that this theorem might be generalized. The resulting study led to Theorem III of this paper.

† This example is due to Professor J. R. Kline.