ON HILBERT'S THIRTEENTH PARIS PROBLEM*

BY H. W. RAUDENBUSH, JR.

At the Paris Congress in 1900, Hilbert† presented for proof the proposition that the function f of the three variables x, y, and z satisfying the equation

\[(1) \quad f' + xf^3 + yf^2 + zf + 1 = 0\]

cannot be represented by the use of a finite number of continuous functions of not more than two arguments. In this note a small part of this problem is considered. We shall prove that the function f cannot have the form $F[a(x, y), P(y, z)]$, where $F(\alpha, \beta)$, $\alpha(x, y)$ and $\beta(y, z)$ are analytic functions.

Before proceeding to the proof it is necessary to notice certain properties of the partial derivatives f_x, f_y, and f_z. They satisfy the identities

\[(2) \quad Uf_x = f^3, \quad Uf_y = f^2, \quad Uf_z = f,\]

where $U = -(7f^3 + 3xf^2 + 2zf + z) \neq 0$. For finite values of x, y, and z, f is finite and does not vanish. Hence U is finite and therefore the first partial derivatives cannot vanish.

In the proof we assume that

\[(3) \quad f(x, y, z) = F[\alpha(x, y), \beta(y, z)],\]

where $F(\alpha, \beta)$, $\alpha(x, y)$, and $\beta(y, z)$ are analytic functions. Since $f_z \neq 0$ and $f_x \neq 0$, $\alpha_x \neq 0$ and $\beta_z \neq 0$ for finite values of x, y, and z. The Jacobian condition for functional dependence

\[\begin{vmatrix}
 f_z & f_y & f_z \\
 \alpha_x & \alpha_y & 0 \\
 0 & \beta_y & \beta_z \\
\end{vmatrix} = 0\]

* Presented to the Society, February 26, 1927.
can then be written in the form

\[A(x, y)f_x + f_y + C(y, z)f_z = 0, \]

where \(A = -\alpha_y/\alpha_x \) and \(C = -\beta_y/\beta_z \). Multiplying by \(U \), making use of (2), and subsequently dividing by \(f \), we get

\[A(x, y)f_x + f + C(y, z) = 0. \]

It is now easy to show that \(A \) is linear in \(x \). Differentiating (4) with respect to \(x \) and separately with respect to \(z \) we find by the use of (2) that \(A_z = C_z \). Since \(C \) does not contain \(x \), \(C_z \) does not contain \(x \) and hence \(A_x \) is a function of \(y \) alone.

We shall now show that \(A \) does not contain \(x \) at all. The eliminant with respect to \(f \) between (1) and (4) is an identity in \(x \) that has for its term in the highest power of \(x \) the term contributed by the expansion of \(A \). This term must vanish identically and hence the coefficient of \(x \) in \(A \) must vanish identically. But if \(A \) does not contain \(x \) we have by (4) \(f_x = 0 \). This is impossible and the assumption that \(f \) satisfies (3) leads to a contradiction.

Similarly it can be shown that \(f \) cannot have either the form \(F[\alpha(x, y), \beta(x, z)] \) or the form \(F[\alpha(x, z), \beta(y, z)] \); all functions being assumed analytic.