\[(i + j - 1)!W_{i+j,0} = -\begin{vmatrix}
Q_{10} & -1 & 0 \\
2Q_{20} & Q_{10} & -2 \\
3Q_{30} & 2Q_{20} & Q_{10} & -3 \\
\vdots & \vdots & \ddots & \ddots \\
(i + j)Q_{i+j,0} & \cdots & \cdots & Q_{10}
\end{vmatrix} - (i + j)\]

with a similar expression for \(W_{0,i+j}\).

11. Conclusion. It hardly seems necessary to give numerical examples of these expansions. As in the case of recurrences, from expressions of such generality any desired example may be derived by a mere substitution of numbers for letters in the general formulas. The quotient of two polynomials, the reciprocal of a series or a polynomial, for example, are included as special cases.

It appears from the expressions for \(Z_{11}\) and \(Z_{12}\) in §7, that a further immediate reduction of the order of the determinants (17) is sometimes possible; but to explicate this reduction in the general case would be to mar the simplicity and symmetry of our developments.

In conclusion I should like to thank Professor E. T. Bell for criticism and suggestions in the writing of this paper.

California Institute of Technology

A CORRECTION

In the paper by H. W. March, *The Heaviside operational calculus*, this Bulletin, vol. 33(1927), on page 312, in the line following equation (2), change "negative" to "positive."