CONCERNING THE BOUNDARIES OF DOMAINS
OF A CONTINUOUS CURVE*

BY W. L. AYRES

We shall consider a space M consisting of all the points of a plane continuous curve M, and all point sets mentioned are assumed to be subsets of M. A connected set of points D of M is said to be an M-domain if $M - D$ is closed. The set of all limit points of D which do not belong to D is called the M-boundary of D. If D is an M-domain, D' denotes the M-boundary of D, and \bar{D} denotes the set $D + D'$. The M-boundary of an M-domain D is closed but not necessarily connected, even if D is simply connected, as we may easily show by examples. If N is a continuum, a maximal connected subset of $M - N$ is called a complementary M-domain of N.

Theorem I. Every closed and connected subset of the M-boundary of a complementary M-domain of a continuous curve N is a continuous curve.

Proof. Let K denote a closed and connected subset of the M-boundary of a complementary M-domain D of N. Suppose K is not connected im kleinen. Then there exist two concentric circles C_1 and C_2 (let r_1 denote the radius of C_1 and let $r = r_1 - r_2 > 0$) and an infinite sequence of subcon-
tinua of $K, K_a, K_1, K_2, K_3, \ldots$, such that (1) each of these continuas $K_a (a = \infty, 1, 2, \ldots)$ contains a point a_α on C_1 and a point b_α on C_2, but no point exterior to C_1 or interior to C_2, (2) no two of these continuas have a point in common and no one of them, except possibly K_∞, is a proper subset of any connected subset of K which contains no point without C_1 or within C_2, (3) the set K_∞ is the sequential limiting set of the sequence of continuas K_1, K_2, K_3, \ldots. For any i, let $K'_i = K_\infty + K_{i+1} + K_{i+2} + \cdots$. Let d_1 be the smaller of the numbers $\frac{1}{4} r$ and $\frac{1}{2} d(K_1, K_1^*)$.

Let R_1 denote the set of all points $[P]$ of N such that the distance from P to some point of K_1 is less than d_1. The set R_1 is an open subset of N and hence R_1 contains an arc from a_1 to b_1. This arc contains a subarc x_1y_1 such that x_1 is on G and y_1 is on G and every other point of x_1y_1 is between C_1 and C_2.

For each $n > 1$, let d_n be the smallest of the numbers $d_{n-1}, r2^{-n-1}$, and $\frac{1}{2} d(K_n, K_n^* + x_1y_1 + x_2y_2 + \ldots + x_{n-1}y_{n-1})$. Let R_n denote the set of all points $[P]$ of N such that there is some point of K_n whose distance from P is less than d_n. The set R_n contains an arc from a_n to b_n and this arc contains a subarc x_ny_n such that x_n is on C_2, y_n is on C_1, and every other point of x_ny_n is between C_1 and C_2.

There exists an increasing sequence of positive integers n_1, n_2, n_3, \ldots, such that (1) C_2 contains three points X_1, X_2, X_3 such that every point x_{n_i} lies on the arc $X_1X_2X_3$ of C_2 and in the order $X_1X_2x_{n_2}x_{n_3} \cdots X_3$, (2) C_1 contains three points Y_1, Y_2, Y_3 such that every point y_{n_i} lies on the arc $Y_1Y_2Y_3$ of C_1 and in the order $Y_1Y_2y_{n_2}y_{n_3} \cdots Y_3$, (3) X_3 is the sequential limit point of $[x_{n_3}]$ and Y_3 is the sequential limit point of $[y_{n_3}]$. Clearly K_∞ contains X_3 and Y_3.

† If A and B are sets of points, the symbol $d(A, B)$ denotes the lower bound of all numbers $d(x, y)$, where x is a point of A, y is a point of B, and $d(x, y)$ is the distance from x to y.

The set K_ω contains points X and Y on the circles which are concentric with C_1 and with radii $r_2 + r/10$ and $r_1 - r/10$ respectively. Let η be the smaller of the two numbers $r/10$ and r_2. Since N is connected im kleinen, there exists a positive number δ_η such that any point of N within a distance δ_η of X or Y may be joined to X or Y, as the case may be, by an arc of N every point of which is within a distance η of X or Y. Let n_1 be the smallest integer such that $x_{n_1}y_{n_1}$ contains two points P and Q such that $d(P, X) < \delta_\eta$ and $d(Q, Y) < \delta_\eta$. Then N contains arcs PX and QY, every point of which is within a distance η of X and Y respectively. Let order be defined on these arcs as from P to X and from Q to Y. The arcs PX and QY have points in common with every arc $x_{n_i}y_{n_i}$ for $i \geq 8$.

Let V_{10} and V_{20} be the last points the arcs PX and QY have in common with $x_{n_i}y_{n_i}$. Let U_{11} and U_{21} be the first points and V_{11} and V_{21} be the last points the subarcs $V_{10}X$ and $V_{20}Y$ have in common with $x_{n+1}y_{n+1}$. Let U_{12} and U_{22} be the first points the subarcs $V_{11}X$ and $V_{21}Y$ have in common with $x_{n+2}y_{n+2}$. The set J, composed of the arcs $V_{10}V_{20}$ of $x_{n_i}y_{n_i}$, $U_{11}V_{11}$ and $U_{21}V_{21}$ of $x_{n+1}y_{n+1}$, $U_{12}U_{22}$ of $x_{n+2}y_{n+2}$, $V_{10}U_{11}$ and $V_{11}U_{12}$ of PX, $V_{20}U_{21}$ and $V_{21}U_{22}$ of QY, is a simple closed curve. The subarc of $x_{n+1}y_{n+1}$ lying within J and the arc $x_{n+2}y_{n+2}$ have points p_1 and p_3, respectively, in common with the circle concentric with C_1 and with radius $r_2 + \frac{3}{2}r$. The point p_1 is interior to J and within a distance d_{n+1} of some point of K and this point is a limit point of D. Thus D contains a point in the interior of J. Similarly D contains a point within a distance d_{n+2} of p_3 and thus in the exterior of J. Since D is connected D must contain a point of J. But as J belongs to N and D to $M - N$, D cannot contain a point of J. Thus the assumption that K is not connected im kleinen has led to a contradiction.

Theorem II. If a maximal connected subset K of the boundary of an M-domain is a continuous curve, every closed and connected subset of K is a continuous curve.
DEFINITION. If D is an M-domain and P is a point of $M - \overline{D}$, the M-boundary of the maximal connected subset of $M - \overline{D}$ containing P will be called the M-boundary of D with respect to P. This is a generalization of the notion of outer boundary as defined by R. L. Moore. If M is the entire plane, D is bounded, and P is a point of the maximal connected subset of $M - \overline{D}$ which is unbounded, then the M-boundary of D with respect to P is exactly the outer boundary of D as defined by Moore.

THEOREM III.† If D is an M-domain, P is a point of $M - \overline{D}$, and B is the M-boundary of D with respect to P, then B is the entire M-boundary of some M-domain which contains D.

PROOF. The entire set D lies in the same maximal connected subset of $M - B$ and let R denote this maximal connected subset. Evidently R is an M-domain containing D. Suppose Q is a point of the M-boundary of R. If Q does not belong to B, Q belongs to a maximal connected subset of $M - B$ which is different from R. Then Q is not a limit point of R. Therefore every point of the M-boundary of R is a point of B. Conversely every point of B is an M-boundary point of D and thus of R. Hence B is identical with the M-boundary of R, an M-domain containing D.

THEOREM IV. If (1) D is an M-domain and P is a point of $M - \overline{D}$, (2) every maximal connected subset of D' is a continuous curve, (3) the M-boundary of D with respect to P, which we denote by B, is bounded, then every maximal connected subset of B is either a point, a simple continuous arc or a simple closed curve.

PROOF. Let R be the maximal connected subset of $M - \overline{D}$ containing P, and let B_1 be a maximal connected subset of B.

* Concerning continuous curves in the plane, loc. cit., p. 256.
† Compare R. L. Moore, Concerning continuous curves in the plane, loc. cit., Theorem 3, p. 258.
‡ See R. L. Moore, A characterization of a continuous curve, Fundamenta Mathematicae, vol. 7 (1925), Lemma 1, p. 302.
By Theorem II, B_1 is a continuous curve and B_1 is bounded by hypothesis. If B_1 consists of a single point, our theorem is proved. If B_1 consists of more than a single point then by a theorem due to Mazurkiewicz,* B_1 contains two points x and y which do not cut B_1. The continuous curve B_1 contains an arc xzy from x to y. If $B_1 = xzy$, our theorem is proved. If not, let p be a point of B_1 which does not lie on xzy. By Theorem III, B is the entire M-boundary of some M-domain H which contains D. Clearly R and H are mutually exclusive and B is the entire M-boundary of each. By a theorem due to Wilder,† if p_1 and p_2 are points of R and H respectively there exist arcs p_1x and p_1y which lie except for x and y wholly in R and arcs p_2x and p_2y which lie except for x and y wholly in H. The sets $p_1x + p_1y$ and $p_2x + p_2y$ contain arcs xuy and xvy which lie wholly in R and H respectively except for the points x and y.

Let J_1, J_2, J_3 be the simple closed curves formed of $xuy + xzy$, $xvy + xzy$, $xvy + xuy$ respectively and let I_i and E_i denote the interior and exterior of $J_i (i = 1, 2, 3)$. We have three cases to consider:

Case (1). Suppose $J_3 = I_1 + I_2 + <xzy>$.‡ Any point q of $B - xzy$ lies either in I_1, I_2 or E_3. If q lies in I_1, I_1 contains a point of H since q is a limit point of H. The exterior E_1 contains $<xvy>$ of H. But H is connected and contains no point of J_1. Hence I_1 contains no point of $B - xzy$. Similarly I_3 contains no point of $B - xzy$. Then every point of $B - xzy$ lies in E_3. Since x and y are not cut-points of B_1, the continuous curve B_1 contains an arc px which does not contain y and an arc py which does not contain x. The set $px + py$ contains an arc xwy from x to y. Since p is in E_3 and no point of J_3 except x and y is a point of B_1, the set $<xwy>$ lies

* Un théorème sur les lignes de Jordan, Fundamenta Mathematicae vol. 2 (1921), pp. 119—130.
† Loc. cit., Theorem 1, p. 342.
‡ If xzy denotes a simple continuous arc with end-points x and y $<xzy>$ denotes $xzy - (x + y)$.
entirely in E_3, and thus the arcs xwy and xzy have only x
and y in common. Let J_4 be the simple closed curve $xzy + xwy$.
We will show that $B - J_4$ is vacuous and thus prove $B = B_1 = J_4$.
Suppose $B - J_4$ contains a point q_1. If q_1 lies in the interior
of J_4 both R and H have points in the interior of J_4 since
q_1 is a limit point of both domains. One of the two sets
$<xuy>$ or $<xvy>$, say $<xuy>$, lies entirely in the exterior
of J_4. Then R contains points interior and exterior to J_4
but contains no point of J_4, which is impossible. If q_1 lies
in the exterior of J_4, both R and H contain points in the
exterior of J_4, and one of them contains points in the in-
terior, which is impossible. Therefore $B - J_4$ is vacuous,
which proves the theorem for this case.

Case (2). Suppose $I_2 = I_1 + I_3 + <xuy>$.
Case (3). Suppose $I_1 = I_2 + I_3 + <xvy>$.

In Cases (2) and (3), it may be proved by methods similar
to those of Case (1) that $B = B_1$ and B_1 is a simple closed
curve. Therefore B_1 is either a point, a simple continuous arc,
or a simple closed curve.

In proving Theorem IV we have obtained this result:

Theorem V. Under the hypothesis of Theorem IV, if any
maximal connected subset J of the M-boundary of D
with respect to P is a simple closed curve, then J is the entire M-boundary
of D with respect to P.

Theorem VI. If D is an M-domain, P is a point of $M - D$,
R is the maximal connected subset of $M - D$ containing P, and
Q is a point of the maximal connected subset of $M - \bar{R}$
which contains D, then R' is the M-boundary of R with respect to Q.

Proof. Let H denote the maximal connected subset of
$M - \bar{R}$ which contains D. By definition H' is the M-boundary
of R with respect to Q. The set H' is a subset of R' since the
M-boundary of a domain with respect to a point is always a
subset of the M-boundary of the domain. By definition, R'
is the M-boundary of D with respect to P. Then every point
of R' is a limit point of D and thus of H. As H is a subset of
A THEOREM ON CONNECTED POINT SETS

BY C. KURATOWSKI AND C. ZARANKIEWICZ

1. Introduction. The purpose of this paper is to prove the following theorem.

THEOREM. If S is a connected point set and Z is the set of all points such that $S - p$ is neither connected nor the sum of two connected sets, then Z is finite or countable.

2. Lemma. If S, P, and Q are three non-vacuous connected sets (or points), and if

(1) $P + Q \subset S$,
(2) $P \cdot Q = 0$,
(3) $A \subset S - P$,
(4) $B \subset S - Q$,
(5) $A \cdot Q = 0$,
(6) $B \cdot P = 0$,
(7) A and $S - P - A$ are mutually separated,
(8) B and $S - Q - B$ are mutually separated,

then $A \cdot B = 0$.

Proof. By (1) and (3), $A + P \subset S$. Hence, by (2) and (5), $A + P = (A + P) \cdot (S - Q)$. By (4), $S - Q = B + (S - Q - B)$. Therefore

(9) $A + P = (A + P) \cdot B + (A + P) \cdot (S - Q - B)$.

It follows from (2) and (6) that $P = P - Q - B \subset (A + P)$ $(S - Q - B)$. Since $P \neq 0$, we have

(10) $(A + P) \cdot (S - Q - B) \neq 0$.

Now, by (8), the sets $(A + P) \cdot B$ and $(A + P) \cdot (S - Q - B)$ are mutually separated. On the other hand, by virtue of a