ON THE MAPPING OF THE SEXTUPLES OF THE SYMMETRIC SUBSTITUTION GROUP \(G_6 \)
IN A PLANE UPON A QUADRIC

BY ARNOLD EMCH

1. Introduction. The six permutations of three elements \(x_1, x_2, x_3 \) considered as projective coordinates in a plane determine an involution of sextuples of points which may be mapped on a rational surface.† I shall show that in case of the involution thus defined the map is a quadric whose relation with the plane, established with sufficient details, will lead to some interesting geometric applications. The map of every configuration on the quadric will be a configuration in the plane, invariant under the \(G_6 \), whose geometric properties have been investigated before.‡

2. Mapping of the \(G_6 \). Let \(\phi_1, \phi_2, \phi_3 \) represent the elementary symmetric functions \(\phi_1 = x_1 + x_2 + x_3, \phi_2 = x_2 x_3 + x_3 x_1 + x_1 x_2, \phi_3 = x_1 x_2 x_3 \), so that the general symmetric function of degree four has the form

\[
y_i = a_i \phi_i^4 + b_i \phi_i^3 \phi_2 + c_i \phi_i \phi_3 + d_i \phi_2^2,
\]

depending upon three effective constants. Hence, there are four linearly independent functions \(y_i; i = 1, 2, 3, 4 \), which we may set proportional to the four projective coordinates of a point in a space \(S_3 \). Thus to every point in \((x) \), and consequently to every sextuple \(I_6 \{ (x_1 x_2 x_3), (x_1 x_3 x_2), (x_2 x_1 x_3), (x_3 x_1 x_2), (x_2 x_3 x_1) \} \), corresponds in \(S_3 \) a point \((y) \), and as the system of sextuples is a continuous \(\infty^2 \) manifold, the locus of such points \((y) \) must be a surface, which will be proved to be a quadric cone \(Q \). For the \(y_i \)'s we may

* Presented to the Society, September 9, 1927.
evidently choose any four linearly independent symmetric quartics. For every choice of four such functions we obtain a certain surface \(Q \). But all these surfaces are obviously collinearly related. The simplest choice is

\[
\begin{align*}
\rho y_1 &= x_1^4 + x_2^4 + x_3^4 = \phi_1^4 - 4\phi_2^2\phi_3 + 4\phi_1\phi_3 + 2\phi_3^2, \\
\rho y_2 &= x_2^2 x_3^2 + x_2^2 x_1^2 + x_1^2 x_2^2 = \phi_2^4 - 2\phi_3\phi_2, \\
\rho y_3 &= x_3^3(x_2 + x_3) + x_2^3(x_2 + x_1) + x_1^3(x_2 + x_2) \\
&= \phi_3^2\phi_2 - 2\phi_2^3 - \phi_1\phi_3, \\
\rho y_4 &= x_2^2 x_3 x_3 + x_2^2 x_2 x_2 + x_2^2 x_2 x_2 = \phi_3\phi_2.
\end{align*}
\]

A simple elimination process of \(\psi_1, \psi_2, \psi_3 \) leads to the required relations between the \(\psi \)'s:

\[
(3) \quad \psi_1(\psi_2 + 2\psi_4) + 2\psi_2 - \psi_3^2 - \psi_4^2 + 4\psi_2\psi_4 - 2\psi_3\psi_4 = 0,
\]

which is a quadric cone \(Q \) with the vertex \(V(4, -2, -1, -1) \), as can easily be verified.

To a plane section of \(Q \) corresponds in \((x)\) a quartic which may be any of the reducible or irreducible types \((1)\). Of particular importance are, of course, the exceptional elements of the \((1, 6)\) correspondence between \(Q \) and \((x)\). In the first place for the intersections \(I(1, \omega, \omega^2), J(1, \omega^2, \omega) \) of \(\phi_1 = 0 \) and \(\phi_2 = 0 \) there is \(\psi_1 = \psi_2 = \psi_3 = \psi_4 = 0 \), so that \(I \) and \(J \) are fundamental points in \((x)\). To the first neighborhoods of \(I \) and \(J \), \((1 + \alpha_1, \omega + \alpha_2, \omega^2 + \alpha_3) \) and \((1 + \alpha_1, \omega^2 + \alpha_2, \omega + \alpha_3) \), correspond on \(Q \) for \(\alpha_1 + \alpha_2 + \alpha_3 \neq 0 \),

\[
\begin{align*}
\rho y_1 &= 4(\alpha_1 + \alpha_2 + \alpha_3), \\
\rho y_2 &= -2(\alpha_1 + \alpha_2 + \alpha_3), \\
\rho y_3 &= -(\alpha_1 + \alpha_2 + \alpha_3), \\
\rho y_4 &= \alpha_1 + \alpha_2 + \alpha_3,
\end{align*}
\]

or the point \(V(4, -2, -1, 1) \). To a sextuple on \(\phi_1 = 0 \), distinct from \(I \) and \(J \), corresponds on \(Q \) the point \(T(2, 1, -2, 0) \). A plane \(p = \psi_1 + \lambda\psi_2 + \mu\psi_3 + \nu\psi_4 = 0 \) cuts \(Q \) in a conic \(K \) and the join \(\psi T \) in a point \(R \) on \(K \), to which corresponds in \((x)\) the quartic

\[
(4) \quad \phi_1^4 + (\mu - 4)\phi_1^2\phi_2 + (4 - 2\lambda - \mu + \nu)\phi_1\phi_3 + (2 + \lambda - 2\mu)\phi_3^2 = 0,
\]

which has \(\phi_1 = 0 \) as a double tangent. To a generic point \(R \) on \(\psi T \) correspond thus the first neighborhoods of \(I \) and \(J \) on \(\phi_1 = 0 \). To a plane
1927.] MAPPING OF SEXTUPLES OF G_6 747

\[y_1 + \lambda y_2 + \mu y_3 + (2\lambda + \mu - 4)y_4 = 0 \]

through V, corresponds the quartic

\[\phi_1^4 + (\mu - 4)\phi_2^2 \phi_3 + (2 + \lambda - 2\mu) \phi_2^2 = 0, \]

which clearly reduces to the product of two conics of the type $\phi_i^2 + k\phi_i = 0$. Thus a generic plane of the bundle through V cuts Q in two generatrices to which correspond in (x) two conics of the symmetric pencil $\phi_i^2 + k\phi_i = 0$. To a tangent plane of Q corresponds a double conic $(\phi_i^2 + k\phi_i)^2 = 0$. The tangent plane at R

\[y_1 + 6y_2 + 4y_3 + 12y_4 = 0 \]

touches Q along VT, and to this intersection of the tangent plane, VT counted twice, corresponds in (x) the quadruple line $\phi_1^4 = 0$.

3. Mapping of Intersections of the Quadric Cone. A generic surface F_n cuts Q in a space curve C_{2n} to which corresponds in (x) a symmetric curve C'_n (curve in which the coordinates enter symmetrically). As F_n cuts VT in n points, $\phi_1 = 0$ is, in general, an M-fold double tangent of C'_n. This also appears directly from the fact that in (1) ϕ_3^2 appears in y_1, y_2, y_3, and ϕ_1 is a factor of all other terms in which ϕ_3^2 is not contained.

Conversely to a symmetric n-ic C'_n in (x) corresponds on Q a curve, whose order can easily be determined in every case. For instance, when C'_n does not pass through I and J, which is the case when C'_n contains the term $\phi_3^m, 3m = n$, then a generic quartic C'_4 cuts C'_n in $12m$ points which form $2m$ sextuples. To these correspond on $Q, 2m$ points which lie on a plane of the corresponding conic K of C_n, and which are the intersections of the curve C on Q, corresponding to C'_4. The order of C is therefore $2m$. The curve C_{2m} on Q is cut out by a surface F_m, which may possibly pass through generatrices of Q, or through the point T. For example when C'_n is a sextic, then F_m is a quadric which passes through a generatrix of Q, or is a quadric cone with its
vertex at T. This is in agreement with the counting of constants. The number $N+1$ of terms of a symmetric n-ic is equal to the number of positive integral solutions of the diophantine equation $\alpha + 2\beta + 3\gamma = n$ resulting from the general term $\phi^{a}\phi^{b}\phi^{c}$ of the n-ic, and is equal to the nearest positive integer contained in $(n+3)^{3}/12$. For $n = 6, N+1 = 7$.

The number of constants in F_{1} is 10 which is reduced to 7 by the condition to pass through a generatrix of Q. To the intersection of F_{2} with Q corresponds in (x) an octavic. But to the generatrix of Q, common to F_{2}, corresponds a symmetric conic as a factor of the octavic, so that a sextic remains as a residual curve.

More generally F_{m} cuts Q in a curve to which corresponds in (x) a curve of order $4m$. In order that this reduce to $3m$ it is necessary that a factor of order m split off. These factors are of the form $\phi^{a}\phi^{b}$, with $\alpha + \beta = m$, and F_{m} must pass α times through R and contains β generatrices of Q. Thus in case of $n = 9, m = 3$, F_{m} must be either a cubic cone with vertex at T, or a cubic surface through T and a generatrix of Q. The condition to pass through T and a generatrix of Q absorbs 5 constants of F_{3}, and leaves 15 (14 effective) disposable constants. But through the intersection of a quadric and a cubic surface there are ∞^{3} other cubics, so that there are ∞^{12} linearly independent residual quintics on Q to which corresponds in (x) the same manifold of conics, which is in agreement with the number of solutions of the diophantine equation, in case of $n = 9$.

4. Symmetric Quartics. To a pencil of planes through a line s cutting Q in A and B corresponds in (x) a pencil of quartics with the same double tangent $\phi_{i} = 0$ and with two sextuples A' and B', corresponding to A and B, as base-points outside of the double tangencies at I and J. When s is tangent to Q, the quartics of the pencil all touch each other in the points of a sextuple. Now consider any two conics K' and K'' on Q. The common tangent-planes of K' and K'' envelope two cones. Through a generic
point of Q there are two tangent-planes to each of these cones. To K' and K'' correspond in (x) two quartics C_i' and C_i''. Every tangent plane of one of these cones cuts Q in a conic which touches K' and K''. To this conic corresponds a quartic which touches each C_i' and C_i'' in points of a sextuple, one for each C_i' and C_i''. Hence we may state the following theorem.

Theorem. Given two symmetric quartics C_i' and C_i'', then there exist two ∞^3 systems of symmetric quartics of index 2, such that every quartic of each system has a sextuple contact (contact in points of a sextuple) with each C_i' and C_i''.

To the intersection of a plane through T with Q corresponds in (x) a symmetric cubic $\phi_0 + \lambda \phi_1 + \mu \phi_3 = 0$. Let K' again be a conic not through I. Now I is the vertex of a quadric cone through K', whose tangent planes cut Q in conics tangent to K'. To these correspond in (x) cubics and a quartic respectively. This leads to the following theorem.

Theorem. For a symmetric quartic corresponding to a generic conic on Q there exists a system of cubics of index 2 with the property of sextuple contacts with the quartic.*

5. **A Problem in Closure.** Let K' and K'' be again two conics on Q not intersecting in real points and O a generic point in space. O as a vertex determines with K' and K'' two cones C' and C'', which intersect O in two other conics L' and L''. Assume O such that C' and C'' have no real generatrix in common, moreover so that it is possible to construct a closed pyramid of n faces inscribed to one cone, say C', and circumscribed to C''. To the four conics K', K'', L', L'' correspond in (x) four quartics C_i', C_i'', D_i', D_i''. To a conic cut out on Q by a face of P corresponds in (x) a quartic which cuts each C_i' and D_i' in a sextuple and touches each C_i'' and D_i'' in points of a sextuple. As there

* Such systems of sextuple tact cubics for the general quartic were established by A. Clebsch, Mathematische Annalen, vol. 3 (1871), pp. 45–75.
are \(\infty^1 \) such inscribed and circumscribed pyramids \(P \) the mapping upon \((x) \) gives the following theorem.

Theorem. Let \(C'_i \) and \(C''_i \) be two fixed symmetric quartics in \((x) \). Construct a quartic \(C^{(1)}_i \) with a sextuple contact with \(C'_i \), cutting \(C'_i \) in two sextuples \(S_1 \) and \(S_2 \). Through \(S_2 \) draw another quartic \(C^{(2)}_i \) with a sextuple contact with \(C''_i \), which cuts \(C'_i \) in another sextuple \(S_3 \). Through \(S_3 \) draw similarly a third quartic \(C^{(3)}_i \), cutting \(C'_i \) in a sextuple \(S_4 \), and so forth. Suppose that after drawing \(n \) such quartics, the last \(C^{(n)}_i \) through \(S_n \) cuts \(C'_i \) in a sextuple \(S_{n+1} \) which coincides with \(S_1 \). If this happens once then there exists an infinite number of such series of quartics with the closure property.

Moreover there exist two other fixed quartics \(D'_i \) and \(D''_i \) which are related to these series in precisely the same manner as \(C'_i \) and \(C''_i \).

The University of Illinois

CONGRUENCES OF LINES OF SPECIAL ORIENTATION RELATIVE TO A SURFACE OF REFERENCE

BY M. C. FOSTER

1. **Introduction.** With each line \(l \) of a rectilinear congruence let us associate the point \(M \) in which \(l \) intersects a surface of reference \(S \). We refer \(S \) to any orthogonal system. Let \(\alpha, \beta, \gamma \) be the direction-cosines of \(l \) relative to the moving trihedral of \(S \) at \(M \), the \(x \)-axis being chosen tangent to the curve \(v = \text{const} \). By congruences of special orientation relative to \(S \), we shall mean those congruences for which the functions \(\alpha, \beta, \gamma \) are of a special form. The present paper is concerned primarily with the case when \(\alpha, \beta, \gamma \) are constant.

2. **Normal Congruences.** Relative to the moving trihedral the coordinates of any point \(P \) on \(l \) are

Presented to the Society, December 28, 1926.