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MATHEMATICAL RIGOR, PAST AND PRESENT* 

BY JAMES PIERPONT 

1. Introduction. The Mengenlehre of Cantor, or the theory 
of aggregates (sets), has brought to light a number of para
doxes or antinomies which have profoundly disturbed the 
mathematical community for a quarter of a century. 
Mathematical reasoning which seemed quite sound has led 
to distressing contradictions. As long as one of these is 
unexplained in a final and conclusive manner there is no 
guarantee that other forms of reasoning now in good standing 
may not lead to other contradictions as yet unsuspected. 
For ages the reasoning employed in mathematics has been 
regarded as a model of logical perfection; mathematicians 
have prided themselves that their science is the one science so 
irrefutably established that never in its long history has it 
had to take a backward step. 

No wonder then, that these paradoxes of Burali-Forti 
(1897), Russell, and others produced consternation in the 
camp of the mathematicians ; no wonder that the foundations 
on which mathematics rest are being scrutinized as never 
before. Elaborate at tempts are now in progress to give 
mathematics a foundation as secure as it was thought to 
have in the days of Euclid or of Weierstrass. Personally we 
do not believe that absolute rigor will ever be attained and if 
a time arrives when this is thought to be the case, it will be a 
sign that the race of mathematicians has declined. However, 
the aim of this paper is not to show this, but rather to pass 
in review some typical examples of what were regarded at the 
time as good mathematical demonstrations, somewhat as a 

* Presented by invitation of the Program Committee at the Annual 
Meeting of the Society, held in connection with the meetings of the 
American Association for the Advancement of Science, at Nashville, 
December 28, 1927. 
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historical pageant presents to our eyes famous persons in 
chronological sequence. 

2. The English School of the Eighteenth Century. Let us 
start with the eighteenth century, a century in which the 
efforts of mathematicians were largely spent in perfecting 
the calculus and in applying it to geometry, astronomy, and 
the natural sciences. The founders, Newton and Leibnitz, 
have left no clear account of its principles, and those who 
took up the new science promptly became embroiled in 
labyrinthine disputes. We who regard the infinitesimal 
calculus as nothing more than a calculus of limits can for 
the most part read into the obscure and scanty statements 
of Newton and Leibnitz what they perhaps wished to say. 
But their contemporaries and immediate followers had no 
clear idea of limits as we have, moreover their difficulties 
were increased by the fact that neither Newton* nor Leibnitz 
is quite consistent with himself. 

Thus two schools arose; the English school, following New
ton rested their reasoning on "the motion of bodies ac
celerated according to various hypotheses" and on "prime 
and ultimate ratios"; the continental school, following 
Leibnitz, rested their reasoning on infinitely small, non-
archimedian quantities or "little zeros." Let us exhibit a 
few examples from the two schools; we shall take first the 
English. 

A highly esteemed work was the Treatise on Fluxions^ 
by Thomas Simpson (1st edition, 1737; 2d edition, 1776). 
As is well known, the proof that Newton gave in his Principia 
that (uv)' = uv'+vu' is not satisfactory. This apparently 
was recognized by Simpson, who gives an alternate proof 
resting on the derivative of y = x2. 

On page 1 we read: "All kinds of magnitudes are to be 
considered as generated by the continual motion of some of 
their bounds or extremes ; as a line by the motion of a point ; 

* As for Newton, see an illuminating article by A. De Morgan, Philo
sophical Magazine, (4), vol. 4 (1852), p. 321. 
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a surface by the motion of a line ; and a solid by the motion of 
a surface. Every quanti ty so generated is called a variable 
or flowing quanti ty; and the magnitude by which any 
flowing quantity would be uniformly increased in a given 
portion of time with the generating celerity at any proposed 
position or instant (was it from thence to continue invariable) 
is the fluxion of the said quantity at that position or instant." 

Thus in our language the fluxion of a variable u at the time 
/ is (du/dt)At. Simpson represents this by ii. Let us see now 
how Simpson gets the fluxion of y = x2. On a straight, let 
the reader mark points A, r, R, B in order, and on another 
straight the points C, s, e, 5, D. Simpson reasons textually 
as follows: "Conceive two points tn, n to proceed at the same 
time from two points A, C, along the right lines AB and CD 
in such sort tha t CS = y is always equal to the square of 
AR = x, which latter moves uniformly. Furthermore let 
r, s, R, S, be any contemporary positions of the generating 
points. If rR — v we have CS = y = x2, Cs = (x—v)2 = x2 

— 2xv+v2 and hence Ss= CS— Cs = 2xv — v2. From whence 
we gather that while the point m moves over the distance 
v, the point n moves over the distance 2xv—v2. But this last 
distance (since the square of any quantity is known to 
increase faster in proportion than the root) is not described 
with an uniform motion (like the former) but with an acceler
ated one. I t therefore is equal to, and may be taken to 
express, the uniform space that might be described with the 
mean celerity a t some intermediate point e in the same time. 
Therefore, seeing the distances that might be described in 
equal times, with the uniform celerity of m and the mean 
celerity a t e are as v to 2xv — v2, or as x to 2xx — v£, it is 
evident that in the same time the point m would move 
uniformly over the distance x the other point n with its 
celerity at e would move uniformly over the distance 
2xx—vx. This being the case let r, R and s, S be now sup
posed to coincide, by the arrival of the generating points 
at R and S, then e (being always between 5 and S) will 
likewise coincide with 5 ; and the distance 2xx—vx which 
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might be uniformly described in the aforesaid time with the 
velocity at e (now at S) will become barely equal 2xx 
which (by the definition) is equal to y, the true fluxion of 
Cn or x2." 

To avoid the difficulty in Newton ;s proof, Simpson has 
introduced the point e, which merely replaces one stumbling 
block by another. To realize the great difference between 
this English school and the modern doctrine of limits, one 
has only to compare this bungling proof with the simple 
little proof in any calculus of today. 

3. The Continental School of the Eighteenth Century, We 
now turn to the continental school founded by Leibnitz. 
Perhaps the first systematic presentation of Leibnitz's 
methods to be published was the Analyse des Infiniment 
Petits, by the Marquis de THospital (1696), which enjoyed 
the most widespread popularity. An English translation 
The Method of Fluxions, by E. Stone, appeared in 1730. 
De ^Hospital 's book was largely founded on a little treatise 
by John Bernoulli, Die Dijferentialrechnung* written in 
1691-92, but only published in 1922 on the occasion of the 
tercentenary celebration of the Bernoulli family in Basel. 

The treatise begins on page 11 with three postulates, of 
which the first reads: "A quantity which is diminished or 
increased by an infinitely small quantity is neither increased 
nor decreased." On page 12, we find: "The differential of 
x2 is 2x dx, which is proved thus: (x-\-e)2 = x2 + 2ex+e2, 
subtracting x2 gives 2ex+e2 as remainder, and this on account 
of postulate 1 is 2ex = 2xdx. 

"The differential of x/y is (y dx — xdy)/y2. For if we sub
tract x/y from (x+e)/(y+f) we get (ey— fx)/(y2+fy) = b y 
postulate 1, (ey—fx)/y2 = (ydx — xdy)/y2." 

The next writer of this school whom we wish to consider is 
the immortal Euler, one of the greatest figures in the whole 
history of mathematics. Let us look at his Institutiones 

* We quote from Die Differ entialrechnung von Johann Bernoulli, 
Ostwald's Klassiker, Nr. 211. 



I928j MATHEMATICAL RIGOR 27 

Calculi Differentialis (1775). In the preface he considers 
the differential of y = x2. He gives x the increment co, the 
corresponding increment of y is 2xco + co2 = 97 ; the ratio 
rj to co is 2x + œ to 1. Hence this ratio approaches 2x the 
smaller co is taken. He is thus led to define the differential 
calculus as the method of determining the ratio of evanescent 
increments. These evanescent quantities are called differen
tials "que, cum quantitate destituantur, infinite parva 
quoque dicuntur, quae igitur sua natura ita sunt interpre-
tanda, ut omnino nulla seu nihilo aequalia reputentur." He 
admonishes the reader to bear in mind that these differentials 
are absolutely zero and that nothing can be inferred from 
them other than their mutual ratio, which is in the end 
reduced to a finite quantity (verum perpetuo tenendum est, 
cum haec differentialia absoluta sint nihila, ex iis nihil 
aliud concludi nisi eorum rationes mutual, quae utique ad 
quantitates finitas deducuntur). 

Thus Euler accepted unqualifiedly the notion that there 
exist quantities which are absolutely zero, yet whose ratios 
are finite numbers. The reader who wishes further informa
tion regarding Euler's views may consult Chapter III of 
the above work, entitled De infinitis atque infinite parvis. 
He encourages the reader here by remarking that this notion 
does not hide so great a mystery as is commonly thought, and 
which in the mind of many renders the calculus suspect. Any 
doubts which may have arisen will be shown devoid of foun
dation as the theory is developed. This reminds one of 
d'Alembert's statement: "Allez en avant, la foi vous viendra." 

Euler's Differential and Integral Calculus and his Intro
duction to Infinitesimal Analysis were the standard text
books of the day; they were in everybody's hands. The fame 
of the author and their great popularity renders it necessary 
to give another example of his style of reasoning. 

How does he find the differential of y = log x? This is 
treated in §180 of the Institutiones. Replacing x by x+dx 
gives 

dy = log (x + dx) — log x = log (1 + dx/x). 
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Now in Chapter VII of volume I of the Introduction to 
Analysis he has found 

(1) log (1 + z) = z - z2/2 + s3/3 - s4/4 + • • • . 

Replacing here z by dx/x gives 

dy = dx/x — dx2/{2x2) + dxz/(3xz) — • • • . 

As all the terms of this series beyond the first are evanescent 
we have 

d • log x = dx/x. 

We turn thus to the Introductio in Analysin Infinitorum 
(1748) to learn how the series (1) is established. We find 
(§115, seq.) the demonstration rests on Newton's celebrated 
binomial formula 

m(m — 1) 
(2) (1 + u)m = 1 + mu + — -u2 H . 

Euler gives no proof of this, which in those days was proved 
in algebra.* Let us see, however, how he uses (2) to prove 
(1). Euler starts with the relation aca = l+ko)t co infinitely 
small; then a being taken as base, co = log (l+&w). Hence 

a** = (1 + ka>y = 1 + — • ko>+ -k2o>2 + • • • . 

Set i = z/œ> z finite; then o)i = z> and 

( * - 1) ( < - 1 ) ( * - 2) 
&=l + kz + -k2z2 + ~ -W + • • •. 

2% 2i • 3i 
As i is a "number larger than any assignable quantity" 

i - 1 1 ( i - l ) ( î - 2) 1 
= —^ = , e tc . , 

2i 2 2i- 3i 2 - 3 
hence 

* Judged by modern standards,, these demonstrations are quite worth
less. 
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(3) a* = 1 + kz + k2z2/2l + *V/3! + • • • . 

The larger i is taken, the nearer (l+éco)'* is to 1. Euler thus 
sets 

(i + ko>y = l + x, .-. ko> = (i + x)1» - l , 
iœ = i[(l + x)1»- l]/k. 

Hence 
log (i + x) = i(\ + xyiyk - »/*. 

Now 

* (i - 1) 
(l + a)1" = l + — - ^——x? + • • • ; 

* 2fc2 

hence if i is infinitely large 

*(1 + a)1" = * + * ~ *2/2 + • • • , 
and thus 

(4) log (1 + *) = [x - x2/2 + x*/3 - • • • ] / i . 

Setting z = 1 in (3) gives 

a = 1 + k + k2/2\ + kz/3l + 
As a has been left arbitrary, we may take it so that k = 1 ; 
calling this value e, we have 

e = 1 + 1 + 1 / 2 1 + 1 / 3 ! + 

while (4) goes over into the desired formula (1). 
This demonstration from a Weierstrassian standpoint is 

about as bad as it could be; but then, are we not told now 
by the intuitionalists that a large part of the Weierstrassian 
mathematics is devoid of proof, if indeed it is not nonsense? 
Let us therefore be charitable. We have taken space to 
give this proof because it is entirely typical. 

We have not space to follow the further history of "the 
little zeros" of Leibnitz and Euler. As Americans, it may in
terest us sufficiently to note that our greatest mathematician 
of earlier days, B. Peirce, used them without hesitation in 



30 JAMES PIERPONT [Jan.-Feb., 

his remarkable treatise Curves, Functions, and Forces (2 vols., 
1841), as may be seen in Book II, Chapter 2, page 172 of 
volume 1. 

4. The Method of Lagrange. Another eddy in the current 
of mathematical thought was produced by Lagrange's 
Théorie des Fonctions Analytiques (1st edition, 1797; 2d 
edition, 1813). He is dissatisfied with the little zeros of Leib
nitz, Bernoulli, and Euler "which although correct in reality 
are not sufficiently clear to serve as foundation of a science 
whose certitude should rest on its own evidence." He is as 
little satisfied with the fluxions of Newton, which introduces 
a foreign notion, that of motion; moreover "one can see by 
the learned Treatise on Fluxions by Maclaurin how difficult 
it is to demonstrate the method of fluxions and how many 
ingenious artifices we must employ to demonstrate the dif
ferent parts of this method." 

Lagrange therefore proposes to get rid of little zeros and 
of limits at one stroke by founding the calculus on the 
development of a function in a power series (Taylor's or 
Maclaurin's). With becoming modesty he remarks that it 
is strange that this method of establishing the calculus did 
not occur to mathematicians earlier, especially to Newton, 
the inventor of the method of series and of fluxions. Let us 
see what this grand idea is. 

If in f(x) we replace x by x+h, "it becomes f(x+h) and 
by the theory of series one can develop it in a series 

(1) f(x + h) = ƒ(*) + ph + qh2 + rhz + sh* + • - • . " 

"Not to make gratuitous assumptions," Lagrange begins by 
examining the form of the series (1), and shows that the 
exponents of h are in fact integers and not fractions. He 
next studies the coefficients p, q, r, • • • . To this end he 
observes that if we replace h by h+k in (1) we get 

[ f(x + h + k) = f(x) + (h+ k)p + (A + k)2q + • • • 

(2) j = f{x) + hp+ h2q + Jfir+ • • • 

+ kp + 2hkq + 3h2kr + • • • etc. 
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Also, if we replace x by x+k in (1), we get 

(3) f(x+h+k)-f(x+k) + hp(x+k) + h*q(x+k) + 

Now 

ƒ(* + ft) « ƒ(*) + ft/x(*) + ' • • i 

*(* + ft) - *(*) + **i(*) + • • • , 

#(* + ft) — g(*) + ftgi(«) + • • • > etc. 

These in (3) give 

ƒ(* + h + ft) = f{%) + hp+ h*q+ h*r+ • • • 
(4) 

+ ft/i(*) + hkpt(x) + Wkqi(x) + • • •. 

Comparing (2) and (4) gives 

(5) p = fi(x), g « ipiix), r = Jîi(«), 

Lagrange now observes that we get q from p in the same 
way that we get p from ƒ(#), and a similar remark holds for 
the other coefficients r, s, • • -in (1). 

He calls /i(#) the first derivative of fix) ; it is merely the 
first coefficient in the development (1), and not a differential 
coefficient obtained by a passage to the limit. He denotes 
it by fix). This function also has a first derivative which he 
denotes by fix) etc. Thus the relations (5) give 

which in (1) give 

fix +h)= f(x) + hf'ix) + !ƒ ' (*) + • • • . 

Lagrange now observes: "This new expression has the ad
vantage of showing how the terms of the series depend on 
each other, and especially how when one knows how to form 
the first derivative function, one can form all the derivative 
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functions which enter the series." Then a little later he 
adds: "For one who knows the rudiments of the (traditional) 
differential calculus, it is clear that these derivative func
tions coincide with 

dy/dx, d2y/dx2, • • • ." 

This then is the grand scheme: no more infinitesimals, no 
more prime and ultimate ratios whose principles have given 
rise to endless disputes. Differential coefficients are merely 
the coefficients in the development of a function. 

When a modern reader looks over reasoning like this and 
bears in mind that Lagrange was one of the greatest mathe
maticians of all time, he is amazed. The great gulf that sepa
rates mathematical reasoning of to-day from that of date 
1813 is brought home very clearly to him. The consoling 
feature about the work that we have seen thus far is this: 
the results are right although the reasoning is faulty. The 
intuition of these great men is far in advance of their logic. 
Is it not quite likely that a similar state of affairs holds in 
the theory of aggregates today? 

Lagrange's method of development of the calculus free 
from the knotty questions regarding infinitesimals and limits 
was received with considerable favor. I t suffers however 
a mortal defect. I t rests upon the assumption that a given 
function can be developed in a power series, and there is 
no known method of deciding this question independently of 
the thing he wishes to avoid, namely limits. 

5. The Standpoint of Cauchy. With Euler and Lagrange, 
a well defined period in the history of mathematics is closed. 
Euler is the last great formalist. We have just seen that 
Lagrange is fully alive to the objectionable reasoning of 
many of his contemporaries, and we have witnessed his 
vain efforts to give the calculus "toute la rigueur des démon
strations des Anciens," as he says. The true method was 
not Newton's, nor Euler's, nor Lagrange's, and yet it lay 
close at hand and had already been clearly stated by 
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d'Alembert in the Encyclopédie* in his article Différentiel. 
Here he writes: "What we most need to treat here is the 
metaphysics of the differential calculus. This metaphysics 
about which one has written so much is more important and 
perhaps more difficult to develop than even the rules of 
this calculus." He remarks that certain mathematicians 
cannot admit the suppositions which are made concerning 
infinitesimals, as they are false in principle and capable of 
leading to wrong results. He then goes on to say : "But when 
one observes that all the facts that have been discovered 
by ordinary geometry may be established by the calculus 
much more easily, one cannot help concluding that this 
calculus furnishes certain simple and exact methods, and 
rests on principles just as simple and certain." 

These he thinks form the metaphysics of Newton, which 
Newton has revealed only in part. D'Alembert reads into 
Newton what Newton ought to have said but which (if we 
are not mistaken) no one had seen before ; and this we believe 
is d'Alembert's great discovery. He says: "Newton has 
never regarded the differential calculus as a calculus of 
infinitesimals, but as a method of prime and ultimate ratios, 
that is to say, a method of finding the limit of these ratios. 
Newton has never differentiated quantities, but only equa
tions, since every equation embraces a relation between 
two variables, and the differentiation of equations is merely 
finding the limit of the ratios between finite differences of the 
two variables which the equation involves." 

In another article, on Limits, he says: "The theory of 
limits is the true metaphysics of the differential calculus." 

The first treatise to adopt this standpoint to the exclusion 
of any other was (as far as I have ascertained) the Traité 
Élémentaire of Lacroix (2d edition, 1806; I have not seen 
the first edition). I t is, however, with Cauchy that the new 

* Encyclopédie ou Dictionnaire Raisonné des Sciences, vol. 10, Geneva, 
1770. This is, I believe, a pirated copy of the original French edition. I 
have not seen this latter; probably d'Alembert's article on the calculus was 
published for the first time some years earlier. 



34 JAMES PIERPONT [Jan.-Feb.» 

era begins. In his Cours d'Analyse (1821), his Résumé des 
Leçons sur le Calcul Infinitésimal (1823), his Leçons sur le Cal
cul Différentiel (1829), and in the Leçons de Calcul Différentiel et 
de Calcul Intégral (2 vols., 1840), by his pupil L'Abbé Moigno, 
we behold for the first time the foundations of the calculus 
developed with a rigor which is near to that of our own to
day. De Moigno in his Introduction observes: "Before 
Cauchy published his treatises, the demonstrations of the 
fundamental theorems of the calculus rested too often on 
the consideration of certain series which were used without 
discernment, without having examined their convergence, 
or if indeed they represented the functions which gave them 
birth. It was a veritable abuse against which Cauchy never 
ceased to protest. Never did he employ the development of 
a function in a series without first establishing its possibility, 
its form, its convergence, in a word its right to represent 
the given function." This we think is rather exaggerated, 
but it is true on the whole. 

If one asks what is one of Cauchy's most obvious over
sights as to rigor, we would say that it is overlooking the 
care that one must take in a very common process in analysis, 
i.e., the interchange in the order of passing to the limit in a 
double limit. Thus in his Cours d'Analyse (p. 131), he states 
that F(x) = ]Cw»(#) is continuous if F is convergent and 
the un are continuous. Under the same conditions (Résumé 
des Leçons, Œuvres (2), vol. 4, p. 237), 

J» 6 /% b 

F dx = X) I un dx. 
a J a 

Also (ibid., p. 195) 
d Cb, Ch df 

— I ƒ(*>**) dx = I — dx, 
OU J a J a OU 

etc. 
The justification of these and similar interchanges of 

limits rests on the notion of uniform convergence, which 
was not discovered till a later date (Stokes, 1847; Seidel, 
1848; Cauchy, 1853). 
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Cauchy's Standard of rigor was immeasurably in advance 
of his contemporaries (we except Gauss of course) ; it served 
as model for a generation of mathematicians. Abel,* writing 
to Holmboe from Paris (1826), says of Cauchy: "He is at 
present the only one who knows how mathematics should 
be treated." In another letter,f speaking of Taylor's de
velopment, he says: "I have found only a single rigorous 
demonstration, that of M. Cauchy." 

6. The Standards of Weierstrass. However, even after 
making various minor improvements relative to double 
limits, etc., the last word on rigor had not been said; there 
was a still higher standard for which to strive. Indeed, so 
vastly superior was this new standard in the minds of some 
of its proselytes that they looked on the rest of their fellow 
mathematicians as living in utter darkness. 

What was the new doctrine and who was its founder? Both 
questions can be answered by one word, it is a name revered 
and honored the world around, Weierstrass. 

What the Weierstrassian doctrine is, is too well known to 
you for me to dwell upon. I may be allowed, however, to men
tion one or two matters which will come up for discussion 
when we reach the next era, the era of to-day. The great 
step in advance that Weierstrass took was to arithmetize 
analysis. Before then, many analytical facts were accepted 
as self evident. For example: if f(x) is continuous in (a, b) 
and has opposite signs at a and b, then ƒ(x) = 0 at some point 
within the interval. One has merely to picture the graph 
of this function to see intuitively the truth of this theorem. 
Tha t this type of reasoning is inadmissible rests on the 
following observation. Let us define with Cauchy: The 
function/(x) is continuous for x = c if lim f(x) =f(c) for x—>c. 
One assumes now that such continuous functions are co
extensive with the class of functions as pictured by our 
geometric intuition. Many examples show us the contrary. 

* Œuvres, vol. 2, p. 250. 
t Ibid., p. 257 
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Perhaps the one that startled the easy going world the 
most was Weierstrass' continuous function having at no 
point a derivative. Another hardly less remarkable example 
was Peano's curve which passes through every point of 
a square. Finally we note a fundamental problem: What 
is the meaning of the limit of a sequence #i, a2, a3, • • • ? 

To arithmetize analysis one had to ban geometric reason
ing; all proof must rest entirely on pure analysis. This 
forced Weierstrass to find an arithmetic equivalent of our 
geometric notion of an interval or segment of a straight 
line, i.e., to lay down an arithmetic theory of irrational 
numbers. Only then was he able to prove arithmetically 
the simplest properties of continuous functions, properties 
which had been accepted previously as too obvious to 
require even a passing remark. To meet the requirements 
of the new standards of rigor a great deal of the reasoning 
which had been regarded as valid had to be supplemented, 
or when too bad, to be replaced by considerations of a dif
ferent type. If one wishes to form an idea how great these 
changes were, one cannot do better than to compare at
tentively the first edition of C. Jordan's Cours d'Analyse 
(1882-1887) with the second (1893-1896). In the calculus 
of variations the devastation produced by the teaching of 
Weierstrass was even greater, and the work of repair far 
more difficult. 

By the end of the last century the Weierstrassian standards 
of rigor had won over practically the whole world. I t was 
believed that absolute rigor had been reached, that on the 
foundations of Weierstrass our mathematical edifice, whose 
giddy summits seem to reach the clouds, rests so securely 
that nothing can disturb its massive repose. Illustrious 
names can be cited to support this statement; one will suffice. 
In his address before the Paris Congress (1900), Poincaré,* 
reviewing the arithmetization of mathematics, asks: "Have 

* Compte Rendu du Deuxième Congrès International des Mathé
maticiens, p. 115. 
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we at last attained absolute rigor? At each stage of its 
evolution our forerunners believed they too had attained 
it. If they were deceived, are we not deceived like them?" 
After discussing the question he gives his verdict: "One 
may say to-day that absolute rigor has been attained." 
Alas, to-day, a scarce quarter of a century after these 
memorable words were uttered some there are who think we 
have been living in a fool's paradise. The mighty edifice is 
tottering, they think, perhaps soon to fall leaving a horrible 
ruin in its place. I personally do not believe this to be the 
case and this view is shared by most of the mathematicians 
of to-day. And yet when one hears one of the greatest 
living mathematicians calmly telling the world that a 
considerable part of our analysis is devoid of proof, if it is 
not nonsense, and when one beholds the mighty efforts which 
the champions of Weierstrass are making to repel these 
attacks, it is only reasonable, in view of such facts, to ask 
ourselves, "Is all well?" 

We shall use the remainder of this address to give an 
account of this last stage in the evolution of mathematical 
rigor. I t goes back to Kronecker, who confessed one day to 
Netto* that he had spent far more time thinking in philoso
phy than he had in mathematics. Philosophy and mathe
matics are not good companions. 

If I had entered more fully into the early history of our 
theme, you would doubtless have been bored by a great 
deal of talk about its metaphysics. When the mathematician 
has not been clear in his own mind he has had recourse in the 
past to metaphysics. Bertrand Russell once humorously 
defined philosophy as the science that makes simple things 
complicated. Now the mathematician trained in the school 
of Weierstrass was fond of referring to his science as the 
absolutely clear science. Any at tempt to drag in meta
physical speculation was resented with indignant energy. 
How the times have changed! O tempora, o mores! Now see 

* E, Netto, Mathematical Papers, International Mathematical Con
gress, Chicago, 1893. 
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what philosophy did to Kronecker; later we shall see what it 
has done to Brouwer and Weyl, and what a revolution it 
wishes to bring about. 

7. Kronecker's Position. To make Kronecker's position 
clear we may illustrate it by an example taken from algebra. 
Every one knows how fundamental the notion of reducibility 
is. Before Kronecker, algebraicists were content to say a 
polynomial f(x) might have a rational factor, in which 
case f(x) is reducible ; in the contrary case it is irreducible. 
This is merely a logical definition of these terms ; it is a case 
of "either," "or" with no means in sight as far as the defi
nition is concerned to decide whether the given f(x) is 
reducible or is not. 

In his great Festschrift Grundzüge einer arithmetischen 
Theorie der algebraischen Grossen, Journal für Mathematik, 
vol. 92 (1882), Kronecker announces for the first time the new 
doctrine: "The definition of reducibility given in §1 is 
devoid of a sure foundation until a method is given by 
means of which it can be decided whether a given function 
is irreducible or not by the definition." In a footnote, he 
calls attention to the fact that "a similar need (often indeed 
unnoticed) is manifest in many other cases, in definition as 
well as in proof, and I shall take this up on another oc
casion in a general and careful manner." Only to a very 
minor degree did Kronecker carry out his intention, and that 
only in the field of algebra and algebraic numbers. In the 
great field of analysis he did nothing except to criticize in 
lectures and conversation the work of his contemporaries. 
Let us see how deep the new program cuts. The foundation 
of exact analysis is the real number system, whether defined 
as by Weierstrass, or as by Dedekind, or as by Méray and 
Cantor. Of two real numbers a and ô, either a = b or a > b or 
a<bf and definitions are given for each case. According to 
Kronecker they are only definitions in appearance, since 
these definitions do not give the means of deciding in each 
case which of these three alternatives holds. 
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Another example is the fundamental theorem of Bolzano-
Weierstrass relative to the upper and lower limits of a limited 
function. The well known proof consists in establishing the 
logical existence of a sequence of intervals one within the 
other, but it does not in general give the means of calculating 
these limits. The definition, therefore, is not a valid defi
nition and must be rejected, from Kronecker's standpoint. 

In the same year (1882) that Kronecker promulgated his 
new doctrine, Lindernann succeeded in showing that TT is 
not algebraic, and so showed the futility of trying to square 
the circle. In a conversation with Lindernann,* Kronecker 
asks "Of what use is your beautiful investigation regarding 
7T? Why study such problems, since irrational numbers are 
nonexistent?" Kronecker's att i tude is made still clearer by 
the following extract of a letter of Weierstrassf to Mme. 
Kowalevski (1885): "I say that a so-called irrational 
number has as real an existence as any other object of the 
mind ; Kronecker on the contrary regards it now as an axiom 
that only equations between whole numbers e x i s t . . . . 

" I t makes the matter worse that Kronecker uses his 
authority to support the view that all who have labored on 
the foundations of the function theory are sinners before 
the Lord. When a person like Christoffel says that in twenty 
or thirty years the present function theory will be buried, and 
that analysis will be reduced to a theory of forms, one answers 
with a shrug of the shoulders; but when Kronecker makes 
this assertion which I reproduce word for word: 'If I still 
have the time and the energy, I will myself show the mathe
matical world that not only geometry but also arithmetic 
can point the path to analysis, and certainly a more rigorous 
one. If I cannot do this, then another will who comes after 
me, and the world will recognize the inexactitude of the types 
of proof now employed in analysis/ such a statement I say, 

* H. Poincaré, Wissenschaft und Hypothese, 3d edition, 1914, p. 252. 
t G. Mittag-Lefïler, Une page de la vie de Weietstrassf Paris Congress 

(1900), pp. 150-151. 
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. . . is not only humiliating to those who are thus recom
mended to acknowledge their error and abjure what has 
been the object of their unremitting thoughts and efforts, 
but it is also a direct invitation to the younger generation 
to leave their present leaders and to group themselves about 
him as the apostle of a new doctrine which, it is true, has 
yet to be established. Really this is sad and fills me with 
bitter pain." The revolutionary movement inaugurated by 
Kronecker in 1882 apparently died an early death from 
sheer inanition. I t was easy for him dogmatically to assert: 
"Definitions must contain the means of reaching a decision 
in a finite number of steps and existence proofs must be 
conducted so that the quantity in question can be calculated 
with any required degree of accuracy," but outside of algebra 
he took no steps to realize his program, nor did any one for 
a quarter of a century seriously make the attempt. We 
therefore leave this movement for the present and consider 
briefly quite another subject. 

8. Rigor in Geometry. So far we have said nothing of rigor 
in geometry. The reason is obvious; more than two thousand 
years before, geometry went through the process which we 
have just sketched for analysis. In the Elements of Euclid 
we have the results of a long period of critical analysis of 
the most acute Greek minds. After the downfall of the an
tique world, the intellectual world of Western Europe lay 
buried in darkness till the great awakening in the sixteenth 
and seventeenth centuries. No wonder that the achievements 
of Greek learning seemed almost superhuman to a people 
who had outgrown the futile subtleties of scholasticism. To 
the mathematicians of the Renaissance and long after, the 
Elements of Euclid was a work of superlative excellence. Let 
the following serve as an example.* I t is "a work whose 
propositions have such an admirable connection and de
pendence that take away but one, and the whole falls; whose 
method is the most just, admitting and advancing nothing 

* Benjamin Martin, Biographia Philosophica, London, 1764, p. 56. 
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without a demonstration, and no demonstration but from 
what foregoes, and these so convincing, elegant, and per
spicuous that it is beyond the skill of man to contrive better. 
Here the most artful and diligent carpers have never been 
able to set a footing." 

However the "artful and diligent carpers" have found first 
one "footing" and then another, so that to-day it is generally 
recognized that the Elements are far, very far, from being 
a perfect work. Definitions are given which do not define, 
axioms are implied but not stated, certain proofs are need
lessly complicated. Perhaps the most unsatisfactory feature 
relates to congruence and the implication of motion or 
displacement. On the other hand there is much that we 
to-day admire not with the blind idolatry of the past but 
with the critical knowledge of a connoisseur. We have a 
great advantage over the Greeks therein that a study of 
various non-euclidean geometries has enabled us to realize 
the difficulties which beset an entirely rigorous treatment of 
euclidean geometry. 

There is no space in this address to discuss the history of 
the critical movement in geometry; we must however men
tion one aspect of it on account of its great importance in 
the thought of to-day relative to the foundations of analysis. 
We refer to the axiomatic treatment of the foundations of 
geometry which reached its highest excellence in Hubert 's 
Grundlagen der Geometrie (1899). Instead of trying to 
define a point, a straight, a plane, this method introduces 
three sets of things and subjects them to certain relations 
called axioms. One has no mental picture of these things; 
the reasoning makes no call on our geometric intuition, it is 
purely formal. On this account it is absolutely necessary 
to give a proof of freedom of contradiction and this is done 
by showing that any contradiction would involve a contra
diction in arithmetic. 

9. Arithmetic. The non-contradiction of the axioms of 
geometry is thus referred to the axioms of our number 
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system. Are the laws of arithmetic non-contradictory? 
However far we carry our developments, can we ever arrive 
at a result 1 = 0 , for example? No one in his senses has ever 
believed this; yet mathematics is not a science which rests 
on faith, but on proof. We are thus led back to our main 
theme, the foundations of analysis. A most important part 
of this theory relates to the number system. 

We may begin our discussion by asking "What are the 
integers 1, 2, 3, • • • ?" The question is as elusive as the 
question, "What is a straight line?" We do not expect the 
philosophers to agree as to what a number is, and indeed they 
have not agreed; but we do expect the mathematicians to 
be unanimous. Do not numbers form the very basis of all 
analysis? E. G. Husserl in his Philosophie der Arithmetik 
(1891) observes "Not one significant question do I know 
which those concerned have answered with even tolerable 
harmony." 

The first a t tempt to establish rigorously the laws of 
arithmetic was, as far as I know, by R. Dedekind in Was sind 
und was sollen die Zahlen (1887). He bases his development 
on infinite aggregates, i.e., as he defines them, on sets which 
can be put in uniform correspondence with a subset. I t was 
incumbent on him to prove the existence of such sets. His 
reasoning (page 17) rests on the set of all things and is thus 
open to the objection of Burali-Forti's paradox. 

G. Frege's Grundgesetze der Arithmetik (vol. 1, 1893; vol. 2, 
1903) also makes use of the aggregate theory. At the close 
of vol. 2 (p. 253) he remarks "A scientist can hardly meet 
with anything more undesirable than to have the foundation 
give way just as the work is finished. In this position I 
was put by a letter from Mr. Bertrand Russell as the work 
was nearly through the press." In his despair Frege's only 
comfort is "Solatium misereris, socios habuisse malorum," 
if indeed this is a comfort. His criticism of his predecessors 
was merciless; what a bitter pill it must have been for 
him to illustrate the old adage, "Errare humanum est!" 
Russell's criticism has to do with the paradox named after 
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him, namely, the set of all sets which are not members of 
themselves. 

These unsuccessful attempts of Dedekind and Frege to 
found the number system on the notion of infinite aggre
gates have brought us now face to face with the notorious 
contradictions in Cantor's Mengenlehre which we referred 
to at the beginning of this address. Paradoxes were no new 
thing in philosophy. Did not Epimenides, the Cretan, 
say that all Cretans are liars, and did not Zeno the Eleate 
show that Achilles could not overtake the tortoise? They 
were something very new, however, in mathematics. Burali-
Forti's paradox (1897) was like a bomb, soon to be followed 
by other bombs of like nature. Consternation spread among 
mathematicians; what was to be done? The greatest authori
ties were called in consultation; their diagnoses were poles 
apart: quot homines, tot sententiae. Poincaré* at the 
Rome Congress (1908) went so far as to say "Later genera
tions will regard the Mengenlehre as a disease from which 
one has recovered." To get rid of these paradoxes, various 
lines of action have been adopted. One may do as Cantor, 
Dedekind and Frege did : give up, quit the field. For such we 
would recall a saying of DeMorganf prompted by the con
tradictions arising from divergent series: "The history of 
algebra shows us that nothing is more unsound than the 
rejection of any method which naturally arises on account 
of one or more apparently valid cases in which such method 
leads to erroneous results. Such cases should indeed teach 
caution, but not rejection; if the latter had been preferred 
to the former, negative quantities, and still more their 
square roots, would have been an effectual bar to the 
progress of algebra • • • and those immense fields of analysis 
over which even the rejectors of divergent series now range 
without fear, would have been not so much as discovered, 
much less cultivated and settled." 

* O. Holder, Die mathematische Methode, Berlin, 1924, p. 556. 
f A. DeMorgan, Differential and Integral Calculus, London, 1842, 

p. 566. 



44 JAMES PIERPONT [Jan.-Feb., 

Other lines of action rest on the answer to the query: 
when is a mathematical object or process defined? Some say, 
its definition can employ but a finite number of words. For 
example Poincaré, discussing Zermelo's well ordering of the 
continuum said:* "There are two cases; either one asserts 
that the method of well ordering is expressible in finite terms 
('endlich aussagbar'), in which case the assertion is not 
proved; • • • or we allow the possibility that the method is 
not 'endlich aussagbar'? In this case I can attach no meaning 
to the procedure; for me it is only empty words." 

In another place,f Poincaré asks: "Is it possible to reason 
on objects which cannot be defined by a finite number of 
words? Is it even possible to speak of them, knowing what 
one is speaking of, pronouncing only empty words? Or on 
the contrary should one not regard them as unthinkable? 
For my part, I do not hesitate to respond that they are pure 
nonentities." Mathematicians of this stamp are called fini-
tists; their position is hotly attacked by the Cantorians. 

Poincaré holds that the paradoxes of the theory of aggre
gates are due to the use of non-predicative definitions. In 
his Science et Méthode» (Paris, 1912), page 207, he says: "Thus 
the definitions which should be regarded as non-predicative 
are those which contain a vicious circle." On page 208 he 
declares : "A definition which contains a vicious circle defines 
nothing." This view is also held by B. Russell. The Can
torians claim that this position cannot be maintained, since 
without such definitions modern analysis would be robbed 
of some of its most valuable results. J 

10. The Logistic Group. Without making too fine dis
tinctions we may say that those engaged in laying the new 
foundations of analysis fall into three groups: 

* H. Poincaré, Sechs Vortrage, Leipzig, 1910, p. 48; they were held at 
Göttingen in 1909. 

t Dernières Penséesy Paris, 1913, p. 132. 
| E. Zermelo, Neuer Beweisfür de Möglichkeit einer Wohlordnung, Ma

thematische Annalen, vol. 65 (1907), p. 107. 
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(1) The logistic: the Italian school is led by Peano, the 
English by Russell and Whitehead. 

(2) The axiomatic: led by Hubert. 
(3) The intuitionist: led by Brouwer. 
The first point to note about the logistic group is the fact 

that their work is written in a sign-language invented by 
Peano and extended by Russell. Relatively few people are 
willing to learn this language and these works therefore are for 
the most part unknown. We may summarize some of their 
leading ideas as follows. Their cardinal idea is that mathe
matics is a part of logic. The concepts and processes of 
mathematics on careful analysis are found to be few in 
number and to admit a symbolic treatment analogous to 
algebraic manipulations. By giving each symbol a precise 
unique meaning one hopes to avoid pitfalls that beset 
ordinary mathematical reasoning due to the ambiguity of 
common language. Moreover the symbolism itself is an 
aid in reasoning in the same way that algebraic symbols help 
us in ordinary arithmetic. The logistic program is to reduce 
all mathematics to symbolic logic; this has already been 
partly accomplished.* One of the great difficulties in this 
program is to avoid the contradictions and paradoxes of 
the theory of aggregates. Russell observed that these 
contradictions could all be avoided by using his vicious 
circle principle.! "Whatever involves all of a collection 
must not be one of the collection." To make this observation 
effective he has invented a theory of types. In this theory 
propositional functions and classes form a hierarchy accord
ing to their possible arguments, also a distinction is made 
between the various functions belonging to the same argu-

* Formulaire de Mathématique, vol. 1, 1895; vol. 2, 1897-99; vol. 3, 
1901; vol. 4, 1902-03. The different parts are written by a variety of 
persons, Peano, Burali-Forti, Vailati, Padoa, Vivanti, etc. See also 
A. N. Whitehead and B. Russell, Principia Mathematica (3 vols.), 2d 
edition, 1925-27. 

t B. Russell, American Journal of Mathematics, vol. 30 (1908), p. 225, 
Whitehead and Russell, Principia Mathematica (2d edition, 1925), p. 58. 
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ment. By this means all known contradictions of the ag
gregate theory are avoided, and mathematical induction 
is established. In order to establish other parts of analysis, 
for example the irrational numbers, Russell is obliged to 
introduce a certain axiom, the axiom of reducibility. This 
axiom states that any combination or disjunction of predi
cates is equivalent to a single predicate. By this means 
the order of a nonpredicative function can be lowered by 
one, so that after a finite number of steps we reach an 
equivalent predicative function. This axiom of reducibility 
seems to have excited universal opposition. One author states 
that its introduction is an act of harikari. Ramsey* holds 
that there is no reason to suppose that it is true, and if it 
were, it would be a happy accident and not a logical neces
sity. It has no place in mathematics, and what cannot be 
proved without it cannot be regarded as proved at all. 
Ramsey believes he has discovered how the work of Wittgen
stein! can be utilized so as to free the Principia from the 
objections which have caused its rejection by the majority 
of German authorities. 

11. The Axiomatic Group. The great leader of this group 
is Hubert. His masterly treatment of the foundations of 
geometry already referred to quite prepared the mathe
matical public to lend a willing ear to his address Ueber 
die Grundlagen der Logik und der Arithmetik at the Heidel
berg Congress, 1904. After referring to the difficulties which 
beset a rigorous development of the number system due in 
part to paradoxes of the aggregate theory, Hubert an
nounces his program as follows: "I believe that all the 
difficulties which I have touched upon may be overcome and 
an entirely satisfactory foundation of the number concept 
can be reached by a method which I call the axiomatic 
method, and whose leading idea I wish now to develop." 

* F. P. Ramsey, The foundations of mathematics, Proceedings of the 
London Mathematical Society, (2), vol. 25 (1926), p. 338. 

t L. Wittgenstein, Tractatus Logico-Philosophicus, London, 1922. 
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Hubert has treated this subject in five other papers, and I 
do not believe he has said his last word yet. These papers 
are: 

Ueber den Zahlbegriff, Jahresbericht der deutschen Mathe-
matiker Vereinigung, vol. 8 (1900). 

Axiomatisches Denken, Mathematische Annalen, vol. 78 
(1918), p . 405. 

Neubegründung der Mathematik, Abhandlungen des Mathe-
matischen Seminars der Hamburgischen Universitât, vol. 1 
(1922), p . 157. 

Die Logischen Grundlagen der Mathematik, Mathematische 
Annalen, vol. 88 (1922-23), p. 151. 

Ueber das Unendlichet Mathematische Annalen, vol. 95 
(1926), p . 161. 

As in the days of Newton and Leibniz, so now the notion 
of infinity is our greatest friend ; it is also the greatest enemy 
of our peace of mind. We may compare it to a great water
way bearing the traffic of the world, a waterway however 
which from time to time breaks its bounds and spreads 
devastation along its banks. Weierstrass taught us to 
believe we had at last thoroughly tamed and domesticated 
this unruly element. Such however is not the case; it has 
broken loose again. Hubert and Brouwer have set out to 
tame it once more. For how long? We wonder. 

Hubert thinks it can become our useful servant and pre
serve all its powers uncurtailed. Brouwer thinks this is im
possible ; we can at most build a canal through our territories 
and allow a fraction of the infinite to pass through it. 

We use the notion infinity in two ways illustrated by the 
integers 1, 2, 3, 4, • • • . In one sense, this is an endless se
quence, such that after each element there follows another; 
in the other, we regard them in their totality, as a finished 
product. We have two other common infinite notions, 
space and time; neither has a bound. After each moment of 
time there is another ; after each point on a straight there is 
another. We never think of these things as closed or finished. 
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Now Gauss wished* only such a conception of the infinite 
in any part of mathematics. For him there was no actual 
infinity, only an endless growing or becoming. I t is this 
notion of an actual infinity which lies at the basis of Cantor's 
theory of transfinite numbers. Of this theory Hilbert says: 
"This seems to me the most admirable fruit of the mathe
matical mind and in fact one of the highest achievements of 
man's purely intellectual processes." After remarking on the 
catastrophic effects that the paradoxes of Russell etc. have 
caused, he declares: "No one shall drive us out of the 
paradise that Cantor created for us." We have seen what 
Poincaré thought of this paradise: that it is a non-entity. 
We will presently examine Brouwer's ideas about it. 

Hilbert tells us that for a quarter of a century the questions 
relating to the foundations of mathematics have never been 
out of his thoughts, yet in his last paper Ueber das Unend-
liche, he is forced to admit that the present state of affairs 
relative to the paradoxes of the aggregate theory is in
tolerable. However, let us be comforted, for Hilbert assures 
us: "There is an entirely satisfactory way to escape the 
paradoxes without betraying our science." This goal can be 
reached only when the notion of the infinite has been made 
entirely clear. 

To this end he turns to the physical sciences. He finds that 
the tendency in modern science is an emancipation from the 
infinite. Matter is not continuous, but atomic; so also is 
energy. The infinite space of our forefathers has shrunk to a 
finite volume, and has become elliptic. 

How does this accord with our mathematical concepts? 
Does not nature show us that we are on the wrong track 
in dealing with the infinite? In opposition to Frege and 
Dedekind, who thought to develop the number system 
independently of intuition or experience by employing an 
actual infinity, Hilbert finds that a prerequisite of scientific 
knowledge is a fund of intuitive ideas; pure logic is not 

* Werke, vol. 8, p. 216. 
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sufficient. Operations on the infinite can be rendered certain 
by an appeal to the finite. In Kant 's philosophy, an idea is 
a concept of the intellect which transcends all experience, 
and by which the concrete of our senses is made complete 
as a totality. This is the role left to infinity: it is an idea. 

Although Hubert is quite opposed to Russell and White
head in the belief that mathematics is a part of logic, it is 
interesting to note how the methods of symbolic logic creep 
into Hubert 's work. Kepler found the conic sections of the 
ancients ready at hand. Einstein found the tensor analysis 
of Ricci and Levi-Civita likewise. Behold the same pre-
established harmony is again made manifest. The symbolic 
logic of Peano, Russell, and Whitehead lies before him like 
a ripe fruit ready to be picked. 

Hubert takes this logic but reinterprets it. For him' it is 
a sign-language which puts mathematical theorems into 
formulas and which expresses logical reasoning by formal 
processes. Signs and symbols of operation are freed from 
their significance with respect to content. The axioms of 
mathematics merely express the rules by which formulas 
follow one another. Beyond these meaningless signs and 
formulas which constitute mathematics there is a "meta-
mathematics" which deals only with the concrete and never 
employs but a finite number of logical steps of a kind uni
versally admitted. 

The first axioms laid down therefore relate to the finite ; for 
them the laws of ordinary logic hold; their freedom of 
contradiction is intuitive. We must however pass to the 
transfinite and use "all," "there is," "the excluded middle," 
"complete induction" etc. To this end Hubert introduces 
the axiom 

A(jA)-*A(a) 

which he says means in ordinary language "If a predicate 
A applies to the object TA, it applies to all objects a." To 
illustrate this Hubert supposes A is the predicate "is venal." 
Then A(TA) is to be regarded as a definite person of such 
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uncorruptible sense of justice that should it turn out that 
he were venal, it would follow that all mankind is venal. 

Hubert regards this transfinite axiom as adjoined to the 
finite axioms just as in algebra we adjoin to the real number 
system the imaginary numbers, and in geometry we adjoin to 
real space the ideal plane at infinity. Still more striking he 
finds the analogy with the ideals in the theory of algebraic 
numbers. How strange it comes about, Hubert exclaims, 
that this (transfinite) form of reasoning, which Kronecker so 
passionately opposed, proves to be the exact analog of Rum
mer's ideals, these numbers which Kronecker so ardently ad
mired and praised as the highest mathematical achievement. 

Having found a system of axioms of sufficient generality 
for all the needs of modern analysis, there remains the final 
and most important step : the placing of the keystone to the 
arch, which in this case is the proof of the freedom from 
contradiction of these axioms. Having outlined how this is 
to be accomplished, Hubert illustrates the power of his 
methods of proof by disposing (rather summarily) of such 
oft-debated problems as complete induction, the Weierstrass 
theorem of the existence of upper and lower limits, Zermelo's 
axiom. 

12. Intuitionalism. The chief figure in this group is 
L. E. J. Brouwer, professor of mathematics a t the University 
of Amsterdam. He early attained international eminence 
for his extraordinarily subtle and far reaching papers in the 
theory of point sets (analysis situs). His doctor's dissertation 
(1907) was Over de grondslagen der wiskunde (On the founda
tion of mathematics). His inaugural address as professor 
a t the Amsterdam university (1912) was on Intuitionism 
and formalism. A translation of this by Professor A. 
Dresden appeared in this Bulletin, vol. 20 (1913-14). Be
ginning with 1918, Brouwer has expounded his theory in 
a series of papers in the Proceedings of the Amsterdam 
Academy of Sciences, in the Mathematische Annalen, and 
in the Journal für Mathematik. 
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It appears that Brouwer, like Kronecker and H. Weyl, is 
very much of a philosopher; his view of mathematics we 
would expect to be much influenced by his philosophical 
speculations. If he holds certain mathematical tenets 
radically different from the usual ones of to-day, his justi
fication will probably be of a philosophical nature.* We 
recall that Kronecker declared that if he did not live to 
carry out his program of overhauling mathematics from the 
bottom up, another would come who would. The fulfillment 
of this prophecy seems to be Brouwer. 

Brouwer not only agrees with Kronecker that a definition 
must contain the means of constructing the object defined, 
but he carries this idea to its logical end and declares the use 
of the logical form known as the tertium non datur, or excluded 
middle, is legitimate only for finite sets. Brouwer believesf 
this law arose from the consideration of finite sets in mathe
matics ; after being adopted by logic it was given an a priori 
existence independent of its mathematical origin, and then 
by virtue of its a priori character it was unjustly extended by 
mathematicians to infinite sets. By adopting these two re
strictions Brouwer robs himself of two of the most powerful 
aids of research in modern analysis. Now no one would 
have an objection to any mathematician's trying to see 
what he could do under certain restrictions ; one might regret 
such efforts as a waste of time, or look at the affair as a 
sporting proposition, like swimming the English Channel 
with one's hands tied. This is not Brouwer's attitude, 
however. Like Kronecker, he does not hesitate to tell his 
contemporaries that they are wrong. Thus in his Intuition-
istische Mengenlehre,% he says that the Komprehensions-
axiom, by virtue of which all things which have a certain 
property are united to form an aggregate (Menge), even in 

* The reader may consult a paper by A. Dresden, Brouwer's contribution 
to the foundations of mathematics, this Bulletin, vol. 30 (1924), p. 31. 

t Jahresbericht der Vereinigung, vol. 28 (1919), p. 203. 
% Proceedings, Amsterdam Academy, vol. 23 (1922), p. 949. 
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the limited form used by Zermelo, is inadmissible in founding 
the aggregate theory, or is at least unserviceable. Only in a 
constructive definition of aggregates is a trustworthy 
foundation of mathematics to be found. Further the 
principle of the excluded middle is an unpermissible means 
of proof, which can be allowed only a scholastic or heuristic 
value; so that theorems which cannot be proved otherwise 
are devoid of any mathematical content. There is no 
sufficient ground for admitting this principle; logic rests on 
mathematics, and not conversely. In his paper* Ueber die 
Bedeutung des Satzes vorn ausgeschlossen Dritten, Brouwer 
remarks: "On this foundation, particularly in the last half 
century, extensive false theories have been erected. The 
contradictions which have been repeatedly encountered have 
brought to life the formalistic criticism." He grants that 
their axiomatic treatment will avoid contradictions, "but 
nothing of mathematical value will be attained in this 
manner; a false theory which is not halted by a contra
diction is none the less false, just as a criminal policy un
hindered by a reprimanding court is none the less criminal." 
These are strong words, and strong words are usually met 
by others. This is Hubert 's counterblast.f "What Weyl 
and Brouwer are doing, is mainly following in the path of 
Kronecker; they are trying to establish mathematics by 
throwing overboard everything which does not suit them 
and dictatorially promulgating an embargo. The effect 
of this is to dismember and cripple our science and to run 
the risk of losing a large part of our most valuable possessions. 
Weyl and Brouwer condemn the general notions of irrational 
numbers, of functions, even number theoretic functions, 
Cantor numbers of higher classes etc., the theorem that an 
infinite set of positive integers has a least, and even the 
'tertium non datur ' , so for example the statement: either 
there is only a finite number of primes or there are infinitely 

* Journal für Mathematik, vol. 154 (1925), p. 1. 
t Neubegründung der Mathematik, Abhandlungen des Mathematischen 

Seminars der Hamburgischen Universitat, vol. 1 (1922), p. 157. 
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many. These are examples of forbidden theorems and modes 
of reasoning. I believe that powerless as Kronecker was to 
abolish irrational numbers (Weyl and Brouwer do allow 
us to retain a torso), no less powerless will their efforts 
prove to-day. No, Brouwer's program does not signify a 
revolution, but merely the repetition of a vain coup de main 
with former means, but which then was undertaken with 
greater dash, yet totally failed. To-day the State is thorough
ly armed and strengthened through the labors of Frege, 
Dedekind, and Cantor. Weyl and Brouwer's efforts are 
doomed in advance to futility." 

We have stated the two main theses of Brouwer: the 
rejection of the comprehension axiom as used by Cantor 
and Zermelo, and the law of the excluded middle. 

In general the rejection of the law of the excluded middle 
produces great complication, which we are inclined to believe 
represents an element of strength rather than of weakness 
in Brouwer's theory. To go further into Brouwer's theory 
would require fresh definitions, and space does not permit 
this. 

All new theories have to struggle for existence and recog
nition. Brouwer's theory is not easy to read. So far his 
theory has not made matters simpler; quite the reverse. 
I t may be that this is necessary. Cauchy's methods forced 
the reasoning of his predecessors into innocuous desuetude; 
Weierstrass showed Cauchy's reasoning was far from perfect. 
Is Brouwer destined to lay down the standards of the next 
generation? 
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