polar is degenerate; for \(p = 3 \), \(n = 3 + 1 \), \(\epsilon = 1 \), we find again the 2d polar is degenerate.

If \(n = \alpha p^m + \beta p^{m-1} + \cdots + \gamma p^a + \delta p \), i.e. \(\epsilon = 0 \) in \(n \), then all the polars of \((1, 0, 0)\) pass through \((1, 0, 0)\) whether or not this point lies on \(f(x, y, z) = 0 \).

If \(n < p \) we find no peculiarities like the above.

Syracuse University

THE CHARACTERISTIC EQUATION OF A MATRIX*

BY E. T. BROWNE

1. Introduction. Consider any square matrix \(A \), real or complex, of order \(n \). If \(I \) is the unit matrix, \(A - \lambda I \) is called the characteristic matrix of \(A \); the determinant of the characteristic matrix is called the characteristic determinant of \(A \); the equation obtained by equating this determinant to zero is called the characteristic equation of \(A \); and the roots of this equation are called the characteristic roots of \(A \). If \(A \) happens to be a matrix of a particular type certain definite statements may be made as to the nature of its characteristic roots. For example, if \(A \) is Hermitian its characteristic roots are all real; if \(A \) is real and skew-symmetric, its characteristic roots are all pure imaginary or zero; if \(A \) is a real orthogonal matrix, its characteristic roots are of modulus unity. However, if \(A \) is not a matrix of some special type, no general statement can be made as to the nature of its characteristic roots. In 1900 Bendixson† proved that if \(\alpha + i\beta \) is a characteristic root of a real matrix \(A \), and if \(\rho_1 \geq \rho_2 \geq \cdots \geq \rho_n \) are the characteristic roots (all real) of the symmetric matrix \(\frac{1}{2}(A + A') \), then \(\rho_1 \geq \alpha \geq \rho_n \). The extension to the case where the elements of \(A \) are com-

* Presented to the Society, December 28, 1927.

plex was made by Hirsch* in 1902. In 1904 Bromwich† further extended the theorem as follows: If \(\alpha + i\beta \) is a characteristic root of a matrix \(A \) whose elements are real or complex, and if \(\rho_1, \rho_2, \cdots, \rho_n \) are the characteristic roots (all real) of \(\frac{1}{2}(A + A') \) and \(i\mu_1, \cdots, i\mu_n \) are the characteristic roots of \(\frac{1}{2}(A - A') \), then \(\alpha \) lies between the greatest and the least of \(\rho_1, \cdots, \rho_n \), and \(|\beta| \) does not exceed the greatest of \(|\mu_1|, \cdots, |\mu_n| \).

In some cases the theorems just cited give very good limits for the characteristic roots of a matrix, while in other cases the limits are not so restricted. Thus in the case of a real orthogonal matrix these theorems may merely state that the characteristic roots lie in the square \(x = \pm 1, y = \pm 1 \). In this paper we shall give a criterion which in some cases, notably in the case of a real orthogonal matrix, give more restricted limits than the theorems above.

2. Reduction of a Matrix to a Semi-Unitary Form. Let \(A \) be any square matrix of order \(n \). Then \(AA' \) is Hermitian and there exists a unitary matrix \(K \) (that is, \(KK' = I \)) such that

\[
KA K' = M,
\]

where \(M \) is zero except in the diagonal, and the elements in the diagonal are the (real) characteristic roots \(\rho_1, \rho_2, \cdots, \rho_n \) of \(AA' \). We may write

\[
(1) \quad M = \kappa \bar{A} \kappa' \kappa A' \kappa' = B \bar{B}',
\]

where

\[
(2) \quad B = \kappa A \kappa'.
\]

From (1) the elements \(b_{ij} \) of \(B \) evidently satisfy the conditions

\[
(3) \quad \sum_{t} b_{it} \bar{b}_{jt} = \rho_{ij}, \quad (i, j = 1, \cdots, n),
\]

where δ_{ij} is the Kronecker symbol, and equals 1 if $i=j$; 0 if $i \neq j$. In view of the conditions (3) we shall say that B is in a semi-unitary (semi-orthogonal, if B is real) form.

If $\rho_i = 1$, $(i=1, \cdots, n)$, B is unitary. We may then state the following theorem.

Theorem I. If A is any square matrix of order n there exists a unitary matrix κ such that $\kappa A \kappa' = B$, where B is in a semi-unitary form.

If M is of rank r, κ may be so chosen that $\rho_i > 0$, $(i=1, \cdots, r)$; $\rho_i = 0$, $(i=r+1, \cdots, n)$. Since $\rho_i = \sum_t b_{it} \delta_{tt} = 0$, $(i=r+1, \cdots, n)$, evidently $b_{tt} = 0$, $(i=r+1, \cdots, n; \ t=1, \cdots, n)$; that is, the last $n-r$ rows of B consist entirely of zeros, so that B is of rank at most r. Hence, B must be of rank exactly r. Since the rank of A equals the rank of B, and the rank of AA' equals the rank of M, incidentally we have given a proof of the following well known theorem.

Theorem. If A is any square matrix of order n, the ranks of A and AA' are the same.*

3. *The Characteristic Roots of AA'.** Referring to the matrix B defined as in (1) and (2), let us form a non-singular matrix $C = (c_{ij})$ by replacing the zeros in the last $n-r$ rows of B by elements $(x_{s1}, x_{s2}, \cdots, x_{sn}) \neq (0, 0, \cdots, 0)$, such that

\[
\sum_{t}^{1, \cdots, n} b_{st} \bar{x}_{st} = 0, \quad (i = 1, \cdots, r; \ s = 1, \cdots, n - r),
\]

and, moreover, such that

\[
\sum_{t}^{1, \cdots, n} x_{it} \bar{x}_{jt} = 0, \quad (i, j = 1, \cdots, n - r; \ i \neq j).
\]

Thus, we may find $(\bar{x}_{11}, \bar{x}_{12}, \cdots, \bar{x}_{1n})$ by determining a non-zero solution of the $n-r$ linear homogeneous equations (4).

Having obtained (x_{11}, \cdots, x_{1n}) we may proceed to find

(\bar{x}_1, \bar{x}_2, \cdots, \bar{x}_n) by adjoining to the system (4) the additional linear homogeneous equation

$$\sum_{t}^{1, \cdots, n} x_{1t}x_{2t} = 0;$$

and so on. If \(\sum_{t}^{1, \cdots, n} c_{ii} \bar{x}_{tt} = \rho_i, (i = 1, \cdots, n) \), then \(\rho_i > 0 \) and if we write

$$\chi_{ij} = \frac{c_{ij}}{(\rho_i)^{1/2}}, \quad (i, j = 1, \cdots, n),$$

the matrix \(\chi \) thus obtained is a unitary matrix. It is evident from the manner in which \(\chi \) was built up that \(B\bar{\chi}' \) is zero except in the diagonal. The elements in the last \(n - r \) places in the diagonal are also zero, while those in the first places are \((\rho_i)^{1/2} \), the square roots of the characteristic roots of \(A\bar{A}' \).

Since \(B\bar{\chi}' \) is real and symmetric, the characteristic roots of

$$N = \chi\bar{B}'B\bar{\chi}' = (B\bar{\chi}')^2$$

are the squares of the characteristic roots of \(B\bar{\chi}' \), and are therefore the characteristic roots of \(A\bar{A}' \). But

$$N = \chi\bar{B}'B\bar{\chi}' = \chi\bar{\kappa}\bar{A}'\bar{\kappa}'\chi \bar{\chi}' = \chi\kappa\bar{A}'\bar{\kappa}'\bar{\chi} = \psi\bar{A}'A\psi',$$

where \(\psi \) is the unitary matrix \(\chi\kappa \). Thus it follows* that the characteristic roots of \(\bar{A}'A \) are the same as those of \(N \) and therefore of \(A\bar{A}' \). Hence we have the following theorem.

THEOREM II. If \(A \) is any square matrix of order \(n \) the characteristic roots of \(A\bar{A}' \) are the same as the characteristic roots of \(\bar{A}'A \).

Since the unitary matrices \(\kappa, \chi \) above are such that

$$\kappa A\kappa' = B, \text{ and } B\bar{\chi}' = \chi\bar{B}' ,$$

it follows at once that

$$\kappa A\kappa'\bar{\chi}' = B\bar{\chi}' = \chi\bar{B}' = \chi\kappa\bar{A}'\kappa'.$$

Hence

\[\bar{K}'X'K = A'. \]

Writing \(\bar{K}'X'K = \phi \), we have the following theorem.

Theorem III. If \(A \) is any square matrix of order \(n \) there exists a unitary matrix \(\phi \) such that

\[\phi A \phi = A'. \]

In this connection compare Hilton, *Homogeneous Linear Substitutions*, Ex. 6, p. 124.

Since from (5)

\[A \phi = \bar{\phi}'A' = (A \bar{\phi})', \]

\(A \phi \) is Hermitian, so that we have the following theorem.

Theorem IV. If \(A \) is any square matrix of order \(n \), there exists a unitary matrix \(\phi \) such that \(A \phi \) is Hermitian.

4. *The Characteristic Roots of \(A \).* From (2) the characteristic roots of \(A \) are evidently the same as the characteristic roots of \(B \). Suppose then that \(\lambda \) is a characteristic root of \(B \) so that there exists a set \((x_1, x_2, \ldots, x_n) \neq (0, 0, \ldots, 0) \) such that

\[\sum_{i}^{1, \ldots, n} b_{ii}x_i = \lambda x_i, \quad (i = 1, \ldots, n). \]

Taking the conjugates of both members of each of these equations, we have

\[\sum_{i}^{1, \ldots, n} \bar{b}_{ii} \bar{x}_i = \bar{\lambda} \bar{x}_i, \quad (i = 1, \ldots, n). \]

Multiplying corresponding equations in (6) and (7), member for member, and summing as to \(i \), we find

\[\sum_{i,t}^{1, \ldots, n} \left[\sum_{i}^{1, \ldots, n} b_{ii} \bar{b}_{tt} \right] x_{it} \bar{x}_i = \lambda \bar{\lambda} \sum_{i}^{1, \ldots, n} x_{it} \bar{x}_i; \]

that is

\[\sum_{i}^{1, \ldots, n} \rho_{it} x_{it} \bar{x}_i = \lambda \bar{\lambda} \sum_{i}^{1, \ldots, n} x_{it} \bar{x}_i. \]
Let G be the largest and s the smallest of the characteristic roots of AA'. Then

$$
\lambda \bar{\lambda} \sum x_i \bar{x}_i \leq G \sum x_i \bar{x}_i,
$$

so that $\lambda \bar{\lambda} \leq G$. Similarly, $\lambda \bar{\lambda} \geq s$; i.e.,

$$
s \leq \lambda \bar{\lambda} \leq G.
$$

In particular, if A is unitary so that $A \bar{A}' = I$, then $G = s = 1$, so that $1 \leq \lambda \bar{\lambda} \leq 1$; i.e., $\lambda \bar{\lambda} = 1$, as is well known. Hence we have the following theorem.

Theorem V. If λ is a characteristic root of a square matrix A and if G and s are respectively the largest and the smallest characteristic roots of $A \bar{A}'$, then

$$
s \leq \lambda \bar{\lambda} \leq G.
$$

The University of North Carolina