AN UNNECESSARY CONDITION IN TWO THEOREMS OF ANALYSIS SITUS*

BY P. M. SWINGLE

1. Introduction. In this paper K will be a closed point set such that, if S refers to the space under consideration, \(S - K = S_1 + S_2 \). One or more of the following conditions will hold.

Condition 1. Every simple continuous arc which joins a point of \(S_1 \) to a point of \(S_2 \) contains at least one point of \(K \).

Condition 2. Every point \(P \) of \(S_i \) \((i=1, \text{and} \ 2)\) can be joined to any point \(Q \) of \(K \) by a simple continuous arc \(PQ \) such that \(PQ - Q \) is contained in \(S_i \).

Condition 3. Every two points of \(S_i \) \((i=1, \text{and} \ 2)\) can be joined by a simple continuous arc contained in \(S_i \).

Schoenflies,† using the definition of a simple closed curve given by Jordan, stated and proved the following theorem for a plane \(S \).

THEOREM A. If \(K \) is bounded and if Conditions 1, 2, and 3 hold, then \(K \) is a simple closed curve.

This theorem was later proved by Lennes‡, using his own definition of a simple closed curve. In his paper *On the foundations of plane analysis situs*, R. L. Moore§ points out that

* Presented to the Society, December 29, 1925.
‡ N. J. Lennes, *Curves in non-metrical analysis situs with an application in the calculus of variations*, American Journal, vol. 33 (1911), pp. 287–326, Lennes defines a simple continuous arc from \(A \) to \(B \) as a closed, bounded, connected point set containing \(A + B \) but containing no proper connected subset that contains \(A + B \). He defines a simple closed curve as the sum of two simple continuous arcs which have their end points and only their end points in common.
§ Transactions of this Society, vol. 17 (1916), p. 131–164, Theorem 48. This paper will be referred to hereafter as F. A.
this theorem is true in a space S satisfying his set of Axioms Σ_3. J. R. Kline* stated and proved the following theorem for a space S satisfying Σ_3.

Theorem B. If K is such that Conditions 1, 2, and 3 hold, and if S_i ($i=1$, and 2) is unbounded, then K is an open curve.†

In this paper it is proposed to show that Condition 3 is unnecessary in both Theorem A and Theorem B. The proof will be given on the basis of R. L. Moore's set of Axioms Σ_3. The letter S will be used to represent a space satisfying these axioms. Proofs of these theorems will first be given, using only Conditions 1 and 2, which for Theorem A is independent both of the proof by Schoenflies and of that by Lennes and which for Theorem B is independent of that by Kline. It will then be shown in a very simple manner, independent of these proofs, that Condition 3 is unnecessary in the presence of the other two conditions. I wish to thank Professor R. L. Wilder for his valuable suggestions.

2. Definitions and Proofs.

Definition A.‡ A simple continuous arc from A to B (A and B distinct points) is a closed, bounded,§ connected point set, M, containing $A+B$ such that if X is any point of M distinct from A and B, then $M-X$ is disconnected.

* Transactions of this Society, vol. 18 (1917), p. 177-184. Lennes' definition of a simple continuous arc is used.
† An open curve is a closed, connected set of points, M, such that if P is a point of M, then $M-P$ is disconnected. A point set is closed if it contains all of its own limit points. A set N is disconnected (or not connected) if there exist point sets U and V such that $N=U+V$ separate. A point set which cannot be so divided is connected. By $N=U+V$ separate is meant that N is the sum of two non-vacuous mutually exclusive point sets U and V such that neither contains a limit point of the other.
‡ R. L. Moore, Concerning simple continuous curves, Transactions of this Society, vol. 21 (1920), pp. 313-320, Def. 2.
§ A point set M is bounded if there exists a finite set of regions R_1, R_2, \ldots, R_n such that M is contained in $R_1'+R_2'+\ldots+R_n'$, where $R_i'=R_i+(the\ limit\ points\ of\ R_i\ which\ are\ not\ contained\ in\ R_i)$.
DEFINITION B.* If AXB and AYB are two simple continuous arcs having only A and B in common, then the point set composed of these two arcs is a simple closed (Jordan) curve.

DEFINITION C.† If M is a closed, connected point set which lies in a space S and consists entirely of non-cut points, but which is disconnected by the omission of any two of its points, then M is a simple closed (Jordan) curve.

DEFINITION. A region Z will be a region bounded by a simple closed curve C such that $C \times K = A_1 + A_2$, where A_1 and A_2 are any two points of K, where $C = A_1X_1A_2 + A_2X_2A_1$, and where $A_1X_iA_2$ $(i = 1, 2)$ is an arc contained in $S_i + (A_1 + A_2)$; and K_1 will represent $K \times Z$ and K_2 will represent $K \times (S - Z')$.

THEOREMS 1–47. These theorems are given in F. A.

LEMMA I. If K is such that Condition 1 holds, then there exist at least two distinct points of K.

Since S is connected, by Theorem 22, and is then a domain, there exists a simple continuous arc, by Theorem 15, joining a point of S_1 to a point of S_2. This arc contains at least one point of K, by Condition 1. Let N be a region containing this point such that $S - N'$ contains a point P of S_1 and a point Q of S_2. Since N' is a closed point set and since $S - N'$ is connected, by Axiom 3, $S - N'$ is a domain and there exists an arc PQ contained in $S - N'$, by Theorem 15. This arc contains at least one point of K, by Condition 1. Therefore there exist at least two distinct points of K.

* N. J. Lennes, loc. cit.
† This definition is due to J. R. Kline, this Bulletin, vol. 27 (1921), p. 399. R. L. Wilder has proved that this definition is equivalent to Definition B in our space S; see this Bulletin, vol. 31 (1925), p. 224.
‡ If C and K are point sets $C \times K$ is the point set common to C and K.
§ If N is a point set, N' will represent the point set composed of N and its limit points.
Lemma II. If K is such that Conditions 1 and 2 hold, and if A_1 and A_2 are any two points of K, then there exists a region Z, and A_i ($i=1$, and 2) is a limit point of both K_1 and K_2.

Let W be a point of S_1. There exists an arc A_1W, by Condition 2. such that A_1W-A_1 is contained in S_1 and an arc A_2W such that A_2W-A_2 is contained in S_1. There exists then an arc $A_1Y_1A_2$ such that $A_1Y_1A_2-(A_1+A_2)$ is contained in S_1. Similarly there exists an arc $A_1Y_2A_2$ such that $A_1Y_2A_2-(A_1+A_2)$ is contained in S_2. Let C be the simple closed curve $A_1Y_1A_2+A_2Y_2A_1$. The region bounded by C is then a region Z.

In any region, L, containing A_i ($i=1$, or 2) there exists by Theorem 28 an arc $W_1B_1W_2$ contained in Z (or in $S-Z'$) such that W_j ($j=1$, or 2) is contained in S_j. This arc contains at least one point of K by Condition 1. Therefore A_i is a limit point of K_1 (or of K_2).

Lemma III. If there exists a region Z, and if $K'_1=K_{11}+K_{12}$ separate, then there exists a simple closed curve J_{1i} ($i=1$, and 2) enclosing points of K_{1i} and containing at most A_1+A_2 of K and such that $J_{1i}^XJ_{1i}=0$ and J_{1i} is contained in Z'.

Since $K_1+(A_1+A_2)=K'_1$ is closed and K_{11} and K_{12} are separate, K_{1i} ($i=1$, and 2) is closed. Let P be any point of K_{1i}, except A_1 and A_2. P is not a limit point of K_{12} for K_{12} and K_{11} are mutually exclusive closed point sets. There then exists a region, W say, containing P but not containing a point of K_{12}. Then there exists a region, Y say, contained in $Z\times W$, which contains P. Therefore there exists a region, L, by Theorem 5, which contains P and is such that L' is contained in Y. Therefore $L'\times K_{12}=0$. Thus for each point P of $K_{11}-(A_1+A_2)$ there exists a region L containing P such that L' is contained in Z and does not contain a point of K_{12}.

* Use is here made of the fact: if AB is an arc and K is a closed point set having at least one point in common with AB, then there exists on AB a point belonging to K which precedes every other point of K on AB.
If A_j ($j=1$, or 2) is contained in K_{11} there exists a region, Q_j, say, containing the one A_j but not the other and such that $Q_j' \times K_{12} = 0$. Then there exists an arc $B_{j1}X_jB_{j2}$ contained in Z', by Theorem 28, such that it has B_{j1} ($j = 1$, and 2) and only these points common with C, and such that this arc and the arc $B_{j1}A_jB_{j2}$ of C is contained in Q_j. Let T_{j1} be the region bounded by $B_{j1}X_jB_{j2} + B_{j2}A_jB_{j1}$. It is contained in Z, by Theorem 21. Similarly there exists an arc $C_{j1}Y_jC_{j2}$ contained in $S - Z$, by Theorem 28, but otherwise having the properties of the above arc. Let T_{j2} be the region bounded by $C_{j1}Y_jC_{j2} + C_{j2}A_jC_{j1}$. It is contained in $S - Z'$. Take now for example, the case where $C_{j1}A_jC_{j2}$ contains $B_{j1} + B_{j2}$. There exists then, by Theorem 27, a region $T_j = T_{j1} + T_{j2} + (B_{j1}A_jB_{j2} - (B_{j1} + B_{j2}))$. The set T_j' does not contain points of K_{12}.

Since K_{11} is bounded and closed it has the Heine-Borel property, by Theorem 12. There exists then a finite number of regions, L_1, L_2, \cdots, L_n say, of the set $(L) + (T_i)$ containing all the points of K_{11}. All the above regions can be taken with simple closed curves as boundaries, by Theorem 36. There then exists a subset, G say, of $L_1 + L_2 + \cdots + L_n$ such that each region of G has a simple closed curve as boundary and such that their sum forms a maximal connected subset of $L_1 + L_2 + \cdots + L_n$. Replace T_j by T_{j1} in case T_j is a region of G. There exists by Theorem 42 a simple closed curve, J_{11}, which is a subset of the boundaries of the regions of G and which encloses G. The curve J_{11} contains at most $A_1 + A_2$ of K, for only these points of K are on the boundaries of (L) and T_{j1} and not contained in a region of (L).

Since K_{12} and $L_1' + L_2' + \cdots + L_n'$ are mutually exclusive closed point sets, there exists a region, M, for each point, except A_1 and A_2, of K_{12} such that M' is contained in Z and such that it does not contain points of $L_1' + L_2' + \cdots + L_n'$. If A_i ($i = 1$, or 2) is contained in K_{12}, take Q_i such that

* A point set is said to have the Heine-Borel property if it is true that for every infinite collection H of regions covering it, there exists a finite collection of regions belonging to H and covering it.
Qi' does not contain points of $L_1' + L_2' + \cdots + L_n'$ and so obtain T_i as above. There then exists a simple closed curve J_{12} enclosing a maximal connected subset, H say, of regions of the set $(M) + (T_{ii})$, where H is composed of a finite number of regions, and J_{12} is a subset of the boundaries of the regions of H.

J_{12} contains at most $A_1 + A_2$ of K and $J_{11} \times J_{12} = 0$.

Lemma IV. If there exists a region Z, if K_2' is a bounded point set, and if $K_2' = K_{21} + K_{22}$ separate, then there exists a simple closed curve J_{2i} (i = 1, and 2) enclosing points of K_{2i}, containing at most $A_1 + A_2$ of K, and such that J_{2i} is contained in $S - Z$ and $J_{11} \times J_{12} = 0$.

The proof is the same as in Lemma III.

Lemma V. If K is such that Condition 1 holds, and if J is a simple closed curve containing at most one point, A say, of K, then $J - A$ is contained either in S_1 or in S_2.

Assume that J contains a point B_i (i = 1, 2) of S_i. Then J is the sum of two arcs, $B_1A_2B_2$ and B_2B_1. Each of these arcs contains at least one point of K, by Condition 1, and therefore J contains at least two distinct points of K, contrary to hypothesis.

Lemma VI. If K is such that Condition 2 holds, if J is a simple closed curve contained in S_c (c = 1, or 2) except for the point set $(A) = J \times K$ which is either vacuous or contains but one point, A, and if J encloses at least one point of K, then J encloses $K - (A)$ and S_c (i = 2, or 1).

Let R be the region enclosed by J. Say $S_c = S_1$. Assume that there exists a point, Y say, of S_2 in $S - R'$. Since by hypothesis R contains a point of K, P say, there exists an arc YP, by Condition 2, such that $YP - P$ is contained in S_2. But this is impossible* since J does not contain a point of S_2. Therefore S_2 is contained in R. Assume that there

* Use is here made of the fact: a connected point set which contains a point of a domain, D, and a point not in D, contains a boundary point of D.
exists a point P of K in $S-R'$. Let W be a point of S_2. There exists then an arc PW, by Condition 2, such that $PW-W$ is contained in S_2 which is impossible. Therefore R contains $K-(A)$.

Lemma VII. If there exists a region Z, and if K is such that Conditions 1 and 2 hold, then K_1' is a connected point set.

Assume that $K_1'=K_{11}+K_{12}$ separate. Then, by Lemma III, there exists a simple closed curve J_{i1} $(i=1, \text{ and } 2)$ enclosing points of K_{i1} and containing at most A_1+A_2 of K and such that $J_{11} \times J_{12}=0$. J_{11} may contain A_1, in which case J_{12} will contain at most A_2 of K. Therefore in every possible case one of these curves contains at most one point of K. Say J_{11} does. Then J_{11}, by Lemma V, is contained, except for possibly one point, in S_i $(i=1, \text{ or } 2)$ and so, by Lemma VI, encloses all except possibly one point of K. But it is shown in Lemma II that K_2 is non-vacuous and hence there are points of K in $S-Z'$. But J_{11} is contained in Z' and so K is. Therefore our assumption is incorrect and so K_1' is a connected point set.

Lemma VIII. If there exists a region Z, and if K is such that Conditions 1 and 2 hold, and if K_2' is bounded, then K_2' is a connected point set.

Assume that $K_2'=K_{21}+K_{22}$ separate. Then there exists a simple closed curve J_{2i} $(i=1, \text{ and } 2)$ enclosing points of K_{2i}, contained in $S-Z$, containing at most A_1+A_2 of K, and such that $J_{21} \times J_{22}=0$, by Lemma IV. If one curve contains A_1+A_2 the other one does not contain a point of K; if one contains at most one point of K the other contains at most one point of K. Consider, for example, the case where J_{21} contains A_1+A_2, and let R_{21} be the region bounded by this curve. Consider now how J_{21} was obtained in Lemma IV. If it contains A_1 it must contain the arc $C_{12}A_1C_{12}$ which is common to the boundaries of the region T_{12} and the region Z, for only the boundaries of these two regions contained A_1 in Lemma IV. Thus there exists a simple closed curve,
J_{21}'' say, which is a subset of C and J_{21} and which encloses Z and R_{21}, and also encloses T_1 and T_2. Therefore J_{21}'' does not contain A_i ($i = 1$, or 2). Thus in each possible case we obtain two curves each contained in S_j ($j = 1$, or 2) except for possibly one point, by Lemma V. Then each curve encloses all except possibly one point of K, by Lemma VI. Consider, for example, the case where J_{21} and J_{22} have this property. Since they have no points in common and since each encloses all except possibly one point of K, one must enclose the other. Say J_{21} encloses J_{22}. Consider again how J_{21} was obtained in Lemma IV. It is composed of the boundaries of regions each of which, among other properties, contains points of K_{21}. Say N is one of these regions and that it contains the point P of K_{21}. N' does not contain a point of J_{22} for N was so selected in the proof of Lemma IV. Let R_{22} be the region bounded by J_{22}. Since N has boundary points in $S - R_{22}'$ and since it does not contain boundary points of R_{22}, it, and so points of K, are contained in $S - R_{22}'$. Thus J_{22} does not enclose all except possibly one point of K on J_{22}. Therefore K_{2}' is a connected point set.

Lemma IX. If there exists a region Z, if K_{2}' is bounded, and if K is such that Conditions 1 and 2 hold, then the omission of any point P_i ($i = 1$, and 2) of K_i', $P_i \neq A_1$ or A_2, disconnects K_i'.

There exists an arc $Q_{1i}P_iQ_{2i}$ which is, except for its end points, contained in Z or in $S - Z'$ according as $i = 1$ or 2, where $Q_{ij}P_i - P_j$ ($j = 1$, or 2) is contained in S_j, by Condition 2. The arc $Q_{1i}P_{1i}Q_{12}$, by Theorem 25, divides Z into two regions, Z_{1i} and Z_{12} say, where Z_{1j}' ($j = 1$, and 2) contains A_j. Let $KX(Z_{1i} + A_n) = K_{1n}$. The sets K_{1n} are non-vacuous by Lemma II. Therefore $K_{1i}' - P_i = K_{11} + K_{12}$ separate. Also $Q_{21}Q_{22}$ of C and $Q_{21}P_{2i}Q_{22}$ enclose a region, Z'' say. Take, for example, the case where $Q_{21}Q_{22}$ contains A_1. Let $Z'' \times K_2 + A_1 = K_{21}$ and $(S - Z'') \times K_2 + A_2 = K_{22}$. Then $K_{2}' - P_2 = K_{21} + K_{22}$ separate.
Lemma X. If there exists a region Z, and if K is bounded and such that Conditions 1 and 2 hold, then K_i' ($i = 1$, or 2) is a simple continuous arc.

K_i' is bounded and closed by hypothesis, connected by Lemma VII and Lemma VIII, and disconnected by the omission of any point other than A_1 or A_2, by Lemma IX. Therefore, by Definition A, K_i' is a simple continuous arc with end points A_1 and A_2.

Theorem I. This is Theorem A with Condition 3 omitted.

By Lemma I, there exist two points of K. Then, by Lemma II, there exists a region Z. Thus, by Lemma X, K is the sum of two simple continuous arcs having only their end points in common. Therefore, by Definition B, K is a simple closed curve.

Lemma XI. If K is such that Condition 1 holds, and if S_i ($i = 1$, and 2) is unbounded, then K is not a simple closed curve.

Assume that K is a simple closed curve, enclosing the region R. There exists a point of S_1 and a point of S_2 in $S - R'$, for S_i ($i = 1$, and 2) is unbounded. Then there exists an arc joining these two points and contained in $S - R'$. This arc does not contain a point of K, contrary to hypothesis. Therefore K is not a simple closed curve.

Theorem II. This is the same as Theorem B with Condition 3 omitted.

There exist at least two distinct points of K by Lemma I, P_1 and P_2 say. Assume that $K = N_1 + N_2$ separate and let A_i ($i = 1$, and 2) be a point of N_i. There exists a region Z by Lemma II. Then, by Lemma VII, there exists a connected subset of K, contained in Z', and containing $A_1 + A_2$. But that this connected subset of K should contain points of both of the separate point sets N_1 and N_2 is impossible. Therefore our assumption is incorrect and so K is a connected point set.
K is disconnected by the omission of any two points, A_1 and A_2. For there exists a region Z, by Lemma II, having these two points and only these two points of K on its boundary and such that Z and $S-Z'$ each contain points of K. Thus the omission of these two points divides K into two separate point sets $K \times Z$ and $K \times (S-Z')$. K is a closed point set by hypothesis. Thus by Definition C, if K consists entirely of non-cut points, K is a simple closed curve, contrary to Lemma XI. Thus there exists a cut point, P say, of K. Let $K-P = M_1 + M_2$.

Let $A_i (i = 1, 2)$ be any point of M_i. Then there exists a region Z by Lemma II, which, by Lemma VII, contains a connected subset of K joining A_1 and A_2. That is, this connected point set joins points of the two separate point sets M_1 and M_2. This is impossible unless it contains P. Just as in Lemma X, K_1' being bounded here is an arc. Both M_1 and M_2 have points in Z as P is clearly a limit point of both. Now $K_1'-P$ is the sum of two connected sets, each of which can lie, obviously, in only one of the sets M_1, M_2. Thus it is seen that one of these connected sets must be contained in M_1 and one in M_2. Let $M_i \times (Z+A_i) = M_{1i}$ and $M_i \times (S-Z') = M_{12}$. These point sets are non-vacuous by Lemma II.

The sets M_{12} and M_2 are separate since M_1 and M_2 are separate. Also $(M_{11}-A_1)$ and M_{12} are separate for Z and $S-Z'$ are separate. P is not a limit point of $S-Z$ and so is not a limit point of M_{12}. Therefore $K-A_1=M_{12}+(P+(M_{11}-A_1)+M_2)$ separate. Therefore the omission of any point of M_1 disconnects K. Similarly for any point of M_2. Therefore the omission of any point of K disconnects K.

Let P be any point of K and let $K-P = N_1 + N_2$ separate. Assume that $N_1 = N_{11} + N_{12}$ separate. Let $A_i (i = 1, 2)$ be any point of N_{1i}. There exists by Lemma II a region Z such that $K \times Z' = A_1A_2$ is a simple continuous arc as in Lemma X. This arc joins points of the two separate point sets N_{11} and N_{12}. This is impossible unless it contains P. Thus this arc is the sum of two arcs PA_1 and PA_2. The arc
PA_1 cannot contain points of N_2 for it would then contain a connected point set containing points of the two separate point sets N_1 and N_2. Similarly, it cannot contain points of N_{12}. Therefore $PA_1 - P$ must be contained in N_{11}. Similarly, $PA_2 - P$ must be contained in N_{12}. Therefore the arc $A_1A_2 - P$ must be contained in N_1. Therefore the region Z does not contain points of N_2. Thus P is not a limit point of N_2. But it is well known that $N_2 + P$ is a connected point set and so P is a limit point of N_2. Therefore our assumption is incorrect and so N_i ($i = 1$, and 2) is a connected point set.

K is closed by hypothesis. Therefore K is an open curve.

A simple proof that Condition 3 is unnecessary in Theorems A and B may also be obtained from Lemma I, Lemma II, and the following theorem.

Theorem III. If L is a subset of a point set M, and if $M' - L = M_1 + M_2$ such that (2) every point of M_i ($i = 1$ and 2) can be joined to any point Q of L by a simple continuous arc PQ such that $PQ - Q$ is contained in M_i, and (3) M_j ($j = 1$, or 2) is not arc-wise connected, L contains at most two points.

Take for example the case where M_1 is not arc-wise connected, there being no arc AB of M_1 joining the two points A and B of M_1. Assume that L contains at least three points, E_i ($i = 1$, 2, and 3) say. Then by Condition 2 there exist three arcs AE_i and three arcs BE_i contained in $M_1 + (E_1 + E_2 + E_3)$. Then there exist three arcs, A_1E_i, distinct except for A_1, contained in $AE_1 + AE_2 + AE_3$ and three arcs B_iE_i, distinct except for B_i, contained in $BE_1 + BE_2 + BE_3$. These two sets of three arcs have but $E_1 + E_2 + E_3$ in common for otherwise there exists an arc AB in M_1. There exist then three arcs $A_1E_iB_1$ ($i = 1$, 2, 3) having only A_1 and B_1 in common. Thus there exist three simple closed curves $A_1E_1B_1 + A_1E_2B_1 = J_1$ say, $A_1E_2B_1 + A_1E_3B_1 = J_2$ say, and $A_1E_3B_1 + A_1E_1B_1 = J_3$ say. Let R_i ($i = 1$, 2, and 3) be the region bounded by J_i. Consider for example the case where $R_1 = R_2 + R_3 + A_1E_3B_1 - (A_1 + B_1)$. J_1 is contained in $M_1 + L$.
Assume that $S - R_1'$ contains a point, say U, of M_2. Then by Condition 2 there exists an arc UE_3 contained in $M_2 + E_3$. This is impossible for such an arc must contain a point of J_1. Therefore M_2 is contained in R_1. Similarly it can be proved that M_2 is contained in $S - R_1'$ and so in R_3. Similarly it can be proved that M_2 is contained in $S - R_3'$. Thus a contradiction is obtained. Therefore there do not exist three points of L.

Cornell University

TWO CLASSES OF PERIODIC ORBITS WITH REPELLING FORCES*

BY T. H. RAWLES

1. *Introduction.* The purpose of this paper is to obtain certain classes of periodic orbits† of a system consisting of one body of very great mass which attracts two mutually repellent bodies of very small mass. The forces of attraction and repulsion in the system are assumed to vary inversely as the squares of the distances. It will be shown that if certain conditions of symmetry are imposed the orbits of the two small bodies must lie either in two parallel planes or else be coplanar. In the former case they are circles about a line perpendicular to the two planes and passing through the large body. For the second type of orbit a development in powers of a parameter will be obtained.

2. *The Equation of Motion.* By a proper choice of the units of time and space we can make the coefficient of the intensity of the attraction equal to 1. Then if K^2 is the

* Presented to the Society, February 25, 1928.
† The orbits referred to were first calculated by Langmuir, who employed numerical integration. (Physical Review, vol. 17 (1921), p. 339.) They have been discussed by Van Vleck in his monograph on Quantum Principles and Line Spectra. (Bulletin of the National Research Council, Number 54, p. 89.)