AN ELEMENTARY THEOREM ON MATRICES*

BY M. H. INGRAHAM

This note applies some elementary algebraic theory to the theory of matrices, securing a generalization of the theorem:

If \(y_1, \ldots, y_n \) are elements of a field \(F \) corresponding to \(n \) distinct elements \(x_1, \ldots, x_n \) in \(F \), there exists one and only one polynomial \(f \) of degree less than \(n \) such that \(f(x_i) = y_i \) \((i = 1, \ldots, n)\).

As is well known, every finite square matrix \(m \) with elements in a field \(F \) satisfies its characteristic equation \(|m - \lambda I| = 0 \), and hence satisfies a unique equation, \(g(\lambda) = 0, \) of minimum degree with leading coefficient unity. Moreover, if for two polynomials \(f \) and \(h, f(m) = h(m), \) then \(f(\lambda) \equiv h(\lambda) \mod g(\lambda) \) and conversely.

We seek an answer to the question “Given finite square matrices \(m_1, \ldots, m_n \) and polynomials \(h_1, \ldots, h_n, \) under what conditions can a polynomial \(f \) be found such that \(f(m_i) = h_i(m_i) \) \((i = 1, \ldots, n)\)?”

If the minimum equations of the \(m_i \) are \(g_i(\lambda) = 0, \) \((i = 1, \ldots, n)\), the above question is equivalent to asking, under what conditions the congruences

\[
f(\lambda) \equiv h_i(\lambda) \mod g_i(\lambda),
\]

\((i = 1, \ldots, n),\)

have a solution.

Standard works on number theory discuss this question and give its solution in an elementary fashion. In particular, there are always solutions when \(g_1, \ldots, g_n \) are relatively prime.

From considerations of this known work on congruences, many theorems, two of which follow, may be translated at once to their matrix form.

Theorem 1. If there exists a polynomial \(f \) in a field \(F \) such that for \(n \) finite square matrices \(m_1, \ldots, m_n \) with elements in \(F, \) and \(n \) polynomials \(h_1, \ldots, h_n \) in \(F, f(m_i) = h_i(m_i), \) \((i = 1, \ldots, n),\) then there exists one and only one such \(f \) of degree lower than that of \(k, \) the least common multiple of the minimum equations of \(m_1, \ldots, \)

* Presented to the Society, September 11, 1930.
THEOREM 2. If the minimum equations of n finite square matrices m_1 to m_n with elements in a field F are relatively prime then for any set of n polynomials h_1, \ldots, h_m, in F, a polynomial f may be found such that

$$f(m_i) = h_i(m_i), \quad (i = 1, \ldots, n).$$

These theorems specialize to the above mentioned algebraic theorem since each x_i is a one by one matrix with minimum equation $\lambda - x_i = 0$.

It should be noted that in the above discussion no restriction as to the field in which the elements of the matrices may lie is made, nor are the m_i necessarily of the same order.

THE UNIVERSITY OF WISCONSIN

PROBLEMS OF THE CALCULUS OF VARIATIONS WITH PRESCRIBED TRANSVERSALITY CONDITIONS*

BY LINCOLN LA PAZ†

1. Introduction. Problems of the calculus of variations in the plane for which a prescribed relation exists between the directions of the extremals and the transversals were first studied by Stromquist‡ and Bliss.§ Recently Rawles,|| using a method based on properties of the Hilbert invariant integral, has given an interesting treatment of the analogous problem in (x, y_1, \ldots, y_n)-space.

In the present paper the latter problem is attacked from a quite different point of view.¶ The method here used avoids a restrictive hypothesis made by Rawles with regard to the ex-

* Presented to the Society, August 29, 1929.
† National Research Fellow, 1928–1929.
|| Rawles, Transactions of this Society, vol. 30 (1928), pp. 765–784.
¶ The possibility of approaching the problem from this viewpoint was suggested to the writer by G. A. Bliss.