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ON ANGLES IN CERTAIN M E T R I C SPACES* 

BY W. A. WILSON 

1. Introduction. In a series of articles on metrical geometry f 
Menger has made a study of the geometry of certain abstract 
metric spaces and in particular he has obtained conditions for 
the congruence of metric spaces with sub-sets of euclidean 
spaces. In a recent article^ he suggests a system of axioms for 
"angle spaces" and related problems. 

It will be shown in this note that a theory of angles analogous 
to that of euclidean space is possible for convex complete metric 
spaces any four points of which are congruent with four points 
in some euclidean space. From this certain theorems regarding 
tangents to simple arcs are deduced. 

2. Notation and Definitions. A euclidean space of n dimensions 
will be denoted by En. 

If a and b are two points, the symbol ab will denote the dis
tance between them or, at times, the straight line segment join
ing them. 

If, corresponding to a set A, there is a set A ', in some En con
gruent to A, we say that A can be imbedded in En. The word con
gruence has its usual meaning: A is congruent to A ' if there is a 
one to one correspondence x~x' between the points of A and 
A' such that, if x~x' and y~y', then xy = x'y''. The congruence 
of A to A ' is denoted by A ^A '. 

In stating a congruence between two finite sets it will be un
derstood that the pairs of points correspond in the order written. 
Thus, in the congruence a + b + c—a' + b' + c', we have a~a', 
b~b', and c~c'\ the congruence a + b + c—a'' + c''-\-br is a dif
ferent congruence. 

Likewise, if ab and afb' denote two simple arcs, ab^a'b' if 
there is a one to one correspondence between their points such 
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that a^a', b~b'\ and the relations x~xf and y~y' imply that 
xy — xfyf. As in the previous paragraph the congruences ab—a'b' 
and ab — b'a' are different. 

If any four points of a space Z can be imbedded in a euclidean 
space, we shall say for brevity that Z has the four-point prop
erty* Obviously, in that case any four points can be imbedded 
in Es. 

The terms convex and externally convex are used in the sense 
of Menger. (See Annals of Mathematics, loc. cit., p. 742.) 

3. Two Lemmas. As a preliminary we prove two lemmas which 
form the basis of most of the theorems following. 

LEMMA 1. Let a, b, c, and d be four points of a metric space 
which are congruent to f our points of some euclidean space. If a', 
b', and c' are points in some Es such that a-\-b + c^a' -\-b' -\-cf, 
there is a point df in this Es such that a + b + c+d~a' + b' + c' +d'. 

PROOF. By hypothesis a + b + c+d~a" + b" + cr'+dn, where 
a", bn, c", and d" lie in some Es. If they do not lie in an E2, they 
are the vertices of a tetrahedron Tn. One face of this is the tri
angle a"bnc", which is congruent to thet riangle a'brc'. Hence, 
by euclidean geometry, T" is congruent to a tetrahedron 
T'^a'b'c'd' in the Es under discussion. This gives at once 
a + b + c+d^a' + b' + c'+d'. The special cases where a", bn', c"', 
and dn lie in an E\ or in an E2 are treated in like manner. 

LEMMA 2. Let Z be a metric space which has the f our-point prop
erty. Let a and b be any two points and k be any positive constant. 
Then there is at most one point c for which ac = k-ab and (a) 
ac-\~cb- ab\ (b) ab-\-bc — ac\ or (c) ca-\-ab — cb. 

PROOF. In (a) & ^ 1 ; in (b) & ^ 1 ; and in (c) k may have any 
value. We prove (b), which is typical. Suppose that for some k 
there were two points c and d satisfying the hypotheses. Now 
the four points a, b, c, and d are congruent to points a', b', c', 
and d' in some Ez. Since a'b' + b'c' =arc', the points a', b', and 
c' lie on a line L. Since a'b' + b'd' =a'd\ the points ar, b', and dr 

lie on a line L''. As L-L'Da'-\-b', the lines L and L' are iden
tical. 

* A simple example of a metric space not having the four-point property is 
the surface of a euclidean sphere, with the distance between any two points 
denned as the length of the shorter great circle arc joining them. Another ex
ample is given in §12, where the set e+01+02+/ cannot be imbedded in eucli
dean space. 
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Since a'c' and a'd' are greater than a'b' and b'c' or b'd', re
spectively, by (b), it follows that cr and dr lie on a'b' produced 
beyond b'. Since a'c' — ka'b' = a'd\ we have c' =d'. Hence c = d. 

4. Collinear Points. If a and b are two points and c is a third 
point satisfying one of the three conditions of Lemma 2 above, 
we say that c is collinear with a and b. In other words three points 
are collinear if one lies between the other two. 

If the space is complete and convex, there is for each k be
tween 0 and 1 at least one point c for which ab=ac + cb and 
ac = k-ab. (See Mathematische Annalen, loc. cit., p. 89.) Like
wise, if it is also externally convex, there is at least one point c 
for which (b) and (c) in Lemma 2 are valid. 

Consequently, if we define a segment, ray, or open line as a 
set of points congruent with a euclidean segment, ray, or open 
line, respectively, we have the following results from Menger's 
work and Lemma 2 : 

THEOREM 1. If a convex complete space Z has the four-point 
property, there is one and only one segment joining any pair of 
points a and b. This is the set {x\ for which ab =ax+xb. 

THEOREM 2. If a convex complete space Z has the four-point 
property, the set of all points collinear with any two points is a seg
ment, ray, or open line. 

If the two points in Theorem 2 are a and b, we call the set of 
collinear points the line determined by a and b. The line will 
be an open line if Z is both convex and externally convex; other
wise it may be bounded at one or both ends. It is an easy deduc
tion that a line is determined by any two of its points, and that 
two lines can have but one point in common. 

5. THEOREM 3. Let Z be a convex complete space which has the 
f our-point property. Let L, M, and N be three different lines in Z 
having one point a in common. Then L + ikf+iV can be imbedded 
in Es. 

PROOF. Let b, c, and d lie on L, M, and N, respectively. By 
hypothesis, a, b, c, and d are congruent to points a', b', c', and d' 
in some Es. This congruence defines congruences of L, M, and N, 
respectively, to L', M', and N', which are euclidean segments, 
rays, or open lines through a' and b', a' and c', and a' and d', re-
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spectively. Obviously V• M'= L''• JV'= M''• iV'' = a''. For any 
point x, say on L, there is a unique corresponding point x' on 
L' given by the congruence L~L'. To show that L + M+A^ 
= L' + Mf-{-N', we must prove that, if x ^ x ' and y ^ y ' , then 
xy = xryf. 

To fix the ideas let x lie on L and 3/ on il̂ f. By the hypothesis 
and Lemma 1, there is a point x" such that a-\-b-\-c+x~a' + b' 
+ c ' + x " . Of the points a, b} and x, one lies between the other 
two, say b between a and x. Then ax = ab + bx and a,xn—a'bt 

-\-b'xn. Thus a'x"=ax and x " lies on a 'ô ' produced. By the 
congruence L^L', a'x'= a'b'' + b'x' and x' lies on a'&' produced. 
Since afx' = ax = a'x", we have x'=x". Thus a + & + c+x™&' 
+ £' + c'+x'. 

Again applying the four-point hypothesis and Lemma 1, we 
have a point y" such that a + c+x+y~a' + c'+x'+y". To fix 
the ideas, let y lie between a and c. Then a;y+;yc = ac and 
a'y"-\-y"c'=a'cf. By the congruence M~M', ary'+yfc' =a'c'. 
Since a'y'=afyn and y V' =y'c'', we have yf = y". But x;y = x ' y ' ; 
this gives xy =xry', which was to be proved. 

COROLLARY. Under the above hypotheses two intersecting lin : » 
can be imbedded in a plane. 

6. THEOREM 4. Let Z be a convex complete space which has the 
f our-point property. Let a, b} and c be non-collinear points in Z 
which are congruent to the points a', b', and cf in some E2. Then* 
ab+bc + ca^a'b' + b'c'+c'a'. 

PROOF. The given congruence defines congruences ab~afb'', 
bc=bfc', and ca~cfar] and therefore a one to one correspondence 
between the points {x} of ab + bc + ca and the points {x'} of 
a'&' + &V+c ' a ' . We must prove that, if x ^ x ' and y~y', then 
xy =x'y''. 

To fix the ideas let x lie on ac and y on be. By the four-point 
hypothesis and Lemma 1, there is a point y" in the space con
taining E2 such that a + b+c+y^a'' + b'' + c''+yn'. Now b'y" 
+y''c' = brc'andb'y'+y'c' = b'c\Smceby'' = by==b'y'<indy''c' 
= yc = y'c', we have yn' = y''. 

* This congruence is a congruence between the two sets of three segments; 
it does not imply anything regarding the set of points lying on segments joining 
a to points of the segment be and the point set forming the interior of the eucli-
dean triangle a'b'c'. 
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Repeating this reasoning, we find that there is an xn such 
that a + c-\-y-\-x~a'-\-c'+yf+xf/. Then a'x"-\-x"c' =ax+xc 
=--ac = a'c' and a'x'+x'c' = ax+xc = ac=-a'c'. Hence xr = x". 
Therefore xy =x"y' = x'y', which was to be proved. 

7. Angle between two Lines. In consequence of the two preced
ing sections the angle between two lines in a convex complete 
space having the four-point property can be identified with the 
euclidean angle between their congruent images. Thus, if a, b, 
and c are the vertices of a "triangle," the cosine of the angle bac is 

(ab)2 + (ac)2 - (be)2 

2(ab)(ac) 

With regard to such questions as tangency to a simple arc 
we are handicapped by the absence of a coordinate system and 
the fact that it may be impossible to imbed any more than four 
points of the arc in any one euclidean space. There is, however, 
no difficulty in defining tangents. 

Let C be a simple arc with its points ordered from left to right 
and let a be one of its points. Let L be a half-line having a as 
one end and passing through a point x at the right (left) of a on 
C, and let T be a half-line from a passing through some point t. 
If the angle xat approaches 0 as x—>a, we say that T is a right-
hand (left-hand) tangent to C at a. In consequence of §5 and 
the properties of euclidean space angles obey the rule that angle 
bac-\- angle bad j a n g l e cad', hence there cannot be more than one 
right-hand or left-hand tangent at a point. 

If 5 is a left-hand and T a right-hand tangent at a, there are 
three possibilities: a cusp, an angle-point, or an ordinary tan
gent. The first occurs when the angle between S and T is zero, 
or S = T; the last occurs when S and T make an angle of 7r, or 
S-\-T is a line; and we have an angle-point when the angle be
tween 5 and T is neither 0 nor w. 

To obtain necessary and sufficient conditions for the existence 
of tangents we need the following lemma from plane trigo
nometry. 

8. LEMMA 3. Let axy be a triangle congruent with a plane tri
angle and ax Say. In order that angle xay-^0 as ax-\-ay—>0 it is 
necessary and sufficient that (axJrxy — ay)/(ax)~^0] in order that 
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angle xay-^w as ax+ay—^O it is necessary and sufficient that 
(ax+ay — xy)/ (ax) —>0. 

PROOF. Let 0 be the angle xay. Then by the law of cosines 

(ax + xy — ay) (ay + xy — ax) 
(1) 1 — cos 0 = • 

2(ax)(ay) 
Now 0—»0 if and only if 1 —cos 0—*0. Since \xy — ax \ ^ay, it is 
clear that 1—cos 0 ^ (ax+xy — ay)/(ax)] hence the condition is 
sufficient. 

To prove the converse we set (ax+xy — ay)/(ax) ==m. Then m 
is a non-negative function of the sides of the triangle, and 

(2) ax + xy — ay = m-ax. 

Now 2(ay — a x ) ^ 0 . Adding this to (2), we have ay+xy — ax 
^m-ax, and (1) gives 

m2-ax 
(3) 1 - cos 0 ^ 

2- ay 
Since 1—cos 0—>0, either m^O or there is a sequence of tri
angles {axiyi} for which axiSayu axi—>0, and ay—>0 as i—>oo , 
and m has a positive lower bound k. Then axi/ay—>0 and for i 
large enough the relation axi+Xiy^ayi gives Xiy^axi, or 

ay% + x%y% — axi 1 

2-ay{
 = 2 

But then (1) and (2) give 

1 - cos 0 ^ k/2, 

which is a contradiction. Hence the first part of the theorem is 
proved. 

For the second part we must examine 1 + cos 0, which ap
proaches 0 as 0—>7T. Now 

(ax + ay + xy)(ax + ay — xy) 
1 + cos 0 = — • 

2(ay)(ax) 
Since xy^ax+ay, ax-\-ay+xyS2(ax-\-ay) ^4(Vy). Thus we 
have 1+cos 0—>0 if (ax+ay — xy)/(ax)—*0. On the other hand, 
we have (ax+ay+xy)/[2(ay)] > 1/2; hence the condition is 
necessary. 
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9. THEOREM 5. Let C be a simple arc in a convex complete space 
Z having the four-point property. Let C have a right-hand {left-
hand) tangent at a point a and let x and y be points of C at the 
right {left) of a with ax Say. Then, as x and y both approach a, 
{ax+xy — ay)/ {ax) —>0. 

PROOF. Let T be the tangent and / b e a point of T different 
from a. By the definition of a unilateral tangent, angle tax—>0 
as X' ->a and angle tay^O as y—>a. 

Since angle xay j a n g l e tac+angle tay, angle xay^O as x and 
y both approach a. Then Lemma 3 gives the theorem: 

10. THEOREM 6. Let C be a simple arc in a convex complete 
space Z having the four-point property. At a point a let there be a 
tangent and let x and y be points of C on opposite sides of a, with 
ax^ay. Then, as x and y both approach a, {ax+ay — xy)/{ax)-^0. 

PROOF. Let the tangent T at a be the union of the unilateral 
tangents T' and T" containing points s and t, respectively, dis
tinct from a. Let x be at the left of a and T' be the left-hand tan
gent. Then angle xas-^0 as x—>a and angle yat—>0 as y—-»a. By 
§5 the tangent T and the lines determined by a and x, and by a 
and y can be imbedded in E3. Consequently angle xay-^ir as x 
and y both approach a. The desired conclusion now follows from 
§8. 

11. THEOREM 7. Let Z be a complete metric space which has the 
f our-point property and is both convex and externally convex. Let 
C be a simple arc and a be any point not an end-point. Then the 
conditions of §§9 and 10 are sufficient f or the existence of unilateral 
and ordinary tangents, respectively. 

PROOF. Let us take the case of right-hand tangents. Let x and 
y be any points at the right of a and C, ax^ay, and 6{x, y) be 
the angle xay. By virtue of the hypothesis, the continuity of the 
cosine function, and §8, we have for any positive e a positive 5 
such that 

(1) 0(x, y) < e/2 if ax < 8 and ay < 8. 

Let {xi} be a sequence of points of C at the right of a and 
Xi—^a as i—><x>. For every i greater than some i', axi< ô. Then 
(1) becomes 
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(2) 6(xi, Xj) < e/2 if i ^ V and j ^ i ' . 

Since Z is externally convex there is a point r» on each half-
line from a through x% such that ari = 1. By (2) and elementary 
trigonometry the sequence of points {r%} is a Cauchy sequence 
and converges to a limit r since Z is complete. Let T be the half-
line from a through r. 

Since /%•—>r, we have for any positive e an i " for which 

(3) 0(r, *,-) < e/2 if i è *". 

Relations (1) and (3) now give d(r, x) < e if ax < d. Hence T is a 
right-hand tangent by definition. 

Let us now consider the case of the ordinary tangent. In con
sequence of the first part of the proof we know that, if there is 
no right-hand tangent, there is a constant k>0 and two se
quences {yi} and {y/ } of points of C a t the right of a such that 
yi—>a, yi'—>a, and 

(4) e(yi,yl) > k. 

From the hypothesis and §8 we know that for any positive e, 
any point x on C at the left of a and sufficiently near to a, and i 
greater than some i', 

(5) 7T — 6(x} yi) < e; 

(6) 7T - 0 0 , yi) < e. 

Taking e < £ / 4 , we have by (4), (5), and (6) 

(7) 0 0 , yd + 0 0 , yi) + o(yi, yi) > 2TT + k/2. 

Since the lines through a and x, yi, yl, respectively, can be im
bedded in Ez, relation (7) is false. 

Thus there is a right-hand and likewise a left-hand tangent. 
These form a line since $(x, y)—>w as x—m and y—*a. 

The statement and proof of the theorem for the special cases 
where a is an end-point are obvious. 

12. Conclusion. I t will be noted that the convergence to zero 
of (ax+xy — ay)/(ax) when x and y are on the same side of a 
or of (ax+ay — xy)/ (ax) when x and y are on opposite sides of a 
as x and 3/ approach a on the arc C with ax g #;y is an intrinsic 
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property of the arc and may be true of a particular simple arc 
in any metric space. In the first case we may say that C is 
smooth at the right {left) of a, in the second that C is smooth about a. 
The property of smoothness is allied on the one hand to the tri
angle axiom of metric geometry and on the other to the well 
known fact from elementary geometry that the distance from a 
point x on a curve to a tangent at a is an infinitesimal of the 
second order with respect to ax as x—>a. 

For the existence of a tangent line the condition of external 
convexity or something like it is needed because, as x—>a, the 
half-line from a through x may shrink to a point, as would be 
the case if our curve C were a circle and our space Z the union 
of C and its interior. 

In the absence of the four-point property we have the some
what surprising result that smoothness about a point needs not 
imply unilateral smoothness. To see this, let us take the following 
points in the plane: a = (0,0), 6 = ( - l , 0 ) , e = (l,0), ƒ = (1,1), 
^•==(1/2% 0),/< = (l/2% 1/20, i = l,2, • • • . Let Z be the union 
of the segments be, ef, af, efi, {£;ƒ;}, and {eifi+i}, i = l, 2, • • • ; 
and let the distance between any two points of Z be the length 
of the shortest broken line joining them. Then Z is metric, com
pact, and convex. Now the union of the set Z— (af+ae) and its 
limiting points is a simple arc C joining b and ƒ. If x and y are 
points on the opposite sides of a, the shortest broken line from 
x to y passes through a; hence xy=ax+ay and so C is smooth 
about a. On the other hand, if x and y are successively the points 
{ei} and {ƒ;}, respectively, 

ax + xy — ay aei + dfi — aft ae»(2 — \/2) 
= • = = 2 — V2, 

ax aei aei 

and so C is not smooth on the right of a. 
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