ON POLYNOMIALS IN A GALOIS FIELD*

BY LEONARD CARLITZ†

1. Introduction. Let p be an arbitrary prime, n an integer ≥ 1, $GF(p^n)$ the Galois field of order p^n; let $\mathcal{D}(x, p^n)$ denote the totality of primary polynomials in the indeterminate x, with coefficients in $GF(p^n)$, that is, of polynomials such that the coefficient of the highest power of x is unity. In this note we give a number of miscellaneous results concerning the elements of \mathcal{D}. The results are of two kinds. The first involve generalizations of certain formulas treated by the writer in another paper.‡ Thus if we let $\tau^{(\alpha)}(E)$ denote the number of divisors of E of degree α, then, for $\alpha \leq \beta$ and $\alpha + \beta \leq \nu$, ν the degree of E (we may evidently assume without any loss in generality that $\alpha, \beta \leq \nu/2$),

$$ \sum \tau^{(\alpha)}(E) \tau^{(\beta)}(E) = (\alpha + 1) p^{\nu} - \alpha p^n(\nu - 1), $$

the summation on the left being taken over all polynomials E of degree ν. The other results of this kind involve generalized totient functions, as defined in §4.

The second group of formulas are of a different nature. Let us write p_0 for p^n, and define

$$ F_p(\nu) = \prod_{\alpha=1}^{\nu} (x^{p_0^\alpha} - x)^{p_{\nu}(p-\alpha)}, F(\nu) = F_1(\nu). $$

Then we show that the least common multiple of the polynomials of degree ν is

$$ L(\nu) = F_p(\nu); $$

the product of all the polynomials of degree ν is

$$ \prod_{\deg E = \nu} E = F(\nu) = F_1(\nu); $$

if $Q_p(\nu)$ denote the product of those polynomials of degree ν that

* Presented to the Society, August 31, 1932.
† International Research Fellow.
are not divisible by the \(\rho \)th power of any polynomial (except 1), then

\[
Q_k(h^\rho + k) = \frac{F(h^\rho + k)}{F(h^\rho - \rho + k)} \left\{ \frac{F_{\rho^n}(h - 1)}{F_{\rho}(h)} \right\}^{\rho n k},
\]

where it is assumed that \(0 \leq k < \rho \).

2. Notation. Polynomials will be denoted by large italic letters, ordinary integers by small Greek and italic letters. We write \(\deg E \) for the degree of the polynomial \(E \);

\[
|E| = \rho^n \nu,
\]

where \(\nu = \deg E \). If \(s \) is a real quantity > 1, then

\[
\zeta(s) = \sum_{E} |E|^{-s},
\]

summed over all \(E \) in \(\mathcal{D} \), is the zeta-function of \(\mathcal{D} \); and it is immediately verified that

\[
\zeta(s) = (1 - \rho_0 s^{-1})^{-1}, \quad \rho_0 = \rho^n.
\]

3. The \(\tau \)-Functions. We define

\[
\sigma_t(E) = \sum_{A \mid E} |A|^t,
\]

the summation being taken over all the divisors of \(E \). Then we may verify without any difficulty the following \(\mathcal{D} \) analog of a well known Ramanujan identity:*

\[
\sum_{E} \sigma_t(E)\sigma_u(E) |E|^{-s} = \frac{\zeta(s)\zeta(s - t)\zeta(s - u)\zeta(s - t - u)}{\zeta(2s - t - u)}.
\]

Now it is evident from the definition of \(\tau^{(\alpha)}(E) \) and \(\sigma_t(E) \) that

\[
\sigma_t(E) = \sum_{\alpha} \tau^{(\alpha)}(E) \rho_0^{\alpha t},
\]

so that the left member of (1) is the coefficient of \(\rho_0^{\alpha t + \beta u - \rho s} \) in the right member of (6). But, using (5), the product of zetas in (6) is equal to

To determine the coefficient in question, we note first that, for $t, u < 0, s > 1$,

\[
\frac{1 - p_0^{1+t+u-3s}}{(1 - p_0^{1-t-e})(1 - p_0^{1+u-e})(1 - p_0^{1+t+u-e})} = \sum_{a, b, r} p_0^{a+b+u+v-r-s},
\]

where the sum on the right is extended over all $\alpha, \beta, \nu \geq 0$, such that $\alpha, \beta \leq \nu, \alpha + \beta \geq \nu$. Then the denominator in (7) is

\[
\sum_{\nu \leq \alpha + \beta} \min (\alpha + 1, \beta + 1) \cdot \sum \frac{p_0^{a+b+u+v-r-s}}{\nu < \alpha + \beta};
\]

clearly the second sum contributes nothing to the coefficient of $p_0^{a+b+u-v-s}$ in (7) when $\nu \geq \alpha + \beta$, and so may be ignored. The coefficient in question is therefore

\[
\begin{cases}
(\gamma + 1)p_0^s - \gamma p_0^{s-1} & \text{for } \nu \geq 2, \\
(\gamma + 1)p_0^s & \text{for } \nu < 2,
\end{cases}
\]

where $\gamma = \min (\alpha, \beta)$, thus completing the proof of (1).

By means of the Ramanujan identity (6) we may evidently evaluate

\[
\sum_{\deg E = \nu} \sigma_t(F)\sigma_u(F),
\]

but for general t, u, the result is rather complicated. For certain special values of t, u, the sum in (8) is fairly simple. Thus, for $u = 2t$, it may be verified that

\[
\sum_{\deg E = \nu} \sigma_t(E)\sigma_{2t}(E) = p_0^s \left[\frac{\nu + 3}{3} \right] - p_0^{s-1+3t}\left[\frac{\nu + 1}{3} \right],
\]

where

\[
\left[\frac{\nu + 3}{3} \right] = \frac{(p_0^{3+3t} - 1)(p_0^{3+2t} - 1)(p_0^{3+t} - 1)}{(p_0^{3t} - 1)(p_0^{3t} - 1)(p_0^{3t} - 1)}.
\]

Again, for $s = t = 0$, if we put

\[
\sigma_0(E) = \tau(E) = \sum_{\Delta \mid E} 1 = \sum_{\alpha} \tau^{(\alpha)}(E).
\]

then it is obvious that (7) implies
\[
\sum_{\deg R = \nu} \tau^3(E) = p^\nu \left[\frac{\nu + 3}{3} \right] - p^{\nu - 1} \left[\frac{\nu + 1}{3} \right],
\]
which is indeed a particular case of (9).

4. Totient Functions. Let \(\phi(M; \alpha_1, \cdots, \alpha_k) \) denote the number of sets of (ordered) polynomials \(A_1, \cdots, A_k \), such that
\[
\deg A_i = \alpha_i, \quad (A_1, \cdots, A_k, M) = 1.
\]
Using this definition, we have evidently
\[
\sum_{(A_1, \cdots, A_k, M) = 1} \prod_{i=1}^{k} |A_i|^{-\alpha_i} \prod_{j=1}^{k} |A_j|^{-s_j}
\]
(10)
\[
= \sum_{\alpha_1, \cdots, \alpha_k} \phi(M; \alpha_1, \cdots, \alpha_k) p_{\alpha_1^{\alpha_1} \cdots \alpha_k^{\alpha_k}},
\]
where the \(s_i \) are real and each \(> 1 \). By means of this identity it is easy to express the general \(\phi \)-function in simple terms. Let \(f(s) \) denote the left member of (10); then since
\[
\sum_{\alpha_1, \cdots, \alpha_k} \phi(M; \alpha_1, \cdots, \alpha_k) p_{\alpha_1^{\alpha_1} \cdots \alpha_k^{\alpha_k}}
\]
(11)
\[
< \prod_{P \mid M} (1 + |P|^{-s_1+\cdots+s_k}) \prod_{A \mid M} \left(1 - |A|^{-s_1+\cdots+s_k} \right),
\]
where \(P \) runs through the irreducible divisors of \(M \). Therefore, by (10) and (5),
\[
(11') \quad \phi(M; \alpha_1, \cdots, \alpha_k) = p_{\alpha_1^{\alpha_1} \cdots \alpha_k^{\alpha_k}} \sum_{A \mid M} \mu(A) |A|^{-s_1+\cdots+s_k},
\]
the sum being taken over \(A \), dividing \(M \), and of degree \(\leq \min (\alpha_1, \cdots, \alpha_k) \). If all the quadratfrei divisors of \(M \) satisfy this condition, (11) may be written in the form
\[
(11) \quad \phi(M; \alpha_1, \cdots, \alpha_k) = p_{\alpha_1^{\alpha_1} \cdots \alpha_k^{\alpha_k}} \prod_{P \mid M} \left(1 - |P|^{-s_1+\cdots+s_k} \right).
\]
In particular, let \(\alpha_1 = \cdots = \alpha_k = \nu \), the degree of \(M \). We now write \(\phi_k(M) \) in place of \(\phi(M; \nu, \cdots, \nu) \), and (11) becomes
\[
* \mu (A) \text{ is the Möbius \(\mu \)-function for } \mathbb{D}; \text{ see A.P., §4.}
(12) $\phi_k(M) = \left| M \right|^k \prod_{P \mid M} (1 - \left| P \right|^{-k}) = \sum_{M = AB} \mu(A) \left| B \right|^k$

(where now all the terms in both sum and product are included). It is clear either from the definition or from (12) that $\phi_k(M)$ is the \mathcal{D}-analog of the Jordan ϕ-function of higher order.

5. Sets of Relatively Prime Polynomials. Let $\psi(\alpha_1, \ldots, \alpha_k)$ denote the number of sets of (ordered) polynomials A_1, \ldots, A_k, such that $\deg A_i = \alpha_i$, $(A_1, \ldots, A_k) = 1$. Then, clearly,

$$\sum_{\alpha_i = 0}^{\alpha_k} \psi(\alpha_1, \ldots, \alpha_k) p_0^{-(\alpha_1 + \cdots + \alpha_k)} = \sum_{\alpha_1, \ldots, \alpha_k = 1} \left| A_1 \right|^{-\alpha_1} \cdots \left| A_k \right|^{-\alpha_k}$$

$$= \frac{\xi(s_1) \cdots \xi(s_k)}{\xi(s_1 + \cdots + s_k)} = \frac{1 - p_0^{1-(\alpha_1 + \cdots + \alpha_k)}}{(1 - p_0^{1-\alpha_1}) \cdots (1 - p_0^{1-\alpha_k})},$$

and therefore

(13) $\psi(\alpha_1, \ldots, \alpha_k) = \begin{cases} p_0^{\alpha_1 + \cdots + \alpha_k} (1 - p_0^{-k}) & \text{for } \alpha_1 \cdots \alpha_k \neq 0, \\ 0 & \text{otherwise.} \end{cases}$

As might be expected, the ϕ and ψ functions are closely related. Indeed, from the definition, $\psi(\alpha_1, \ldots, \alpha_k, \nu)$ is the number of sets of polynomials A_1, \ldots, A_k, M, such that

$$\deg A_i = \alpha_i, \deg M = \nu, (A_1, \ldots, A_k, M) = 1;$$

and therefore

(14) $\psi(\alpha_1, \ldots, \alpha_k, \nu) = \sum_{\deg M = \nu} \phi(M; \alpha_1, \ldots, \alpha_k)$.

From (13) and (14) we have

(15) $\sum_{\deg M = \nu} \phi(M; \alpha_1, \ldots, \alpha_k) = \begin{cases} p_0^{\alpha_1 + \cdots + \alpha_k + \nu} (1 - p_0^{-k}) & \text{for } \alpha_1 \cdots \alpha_k \nu \neq 0, \\ 0 & \text{otherwise.} \end{cases}$

In particular, if $\alpha_1 = \cdots = \alpha_k = \nu$, we get for the ϕ-function in (12)

$$\sum_{\deg M = \nu} \phi_k(M) = \begin{cases} p_0^{(k+1)\nu} - p_0^{k(\nu-1)+\nu} & \text{for } \nu > 0, \\ 1 & \text{for } \nu = 0. \end{cases}$$

6. A Modification of the ϕ-Functions. Let us now denote by
\[\sum \phi'(M; \alpha_1, \ldots, \alpha_k) p_0^{-(\alpha_1 + \cdots + \alpha_k)} = \sum' |A_1|^{-s_1} \cdots |A_k|^{-s_k}, \]

the sum on the right being taken over all quadratfrei \(A_i \) such that \((A_1, \ldots, A_k, M) = 1 \); but this sum is equal to

\[\frac{\zeta(s_1) \cdots \zeta(s_k)}{\zeta(2s_1) \cdots \zeta(2s_k)} \prod_{P \mid M} (1 + |P|^{-(\alpha_1 + \cdots + \alpha_k)})^{-1}. \]

Therefore, if \(\lambda(B) \) is the \(\mathfrak{D} \)-analogue of the Liouville \(\lambda \)-function,*

and if \(q(\nu) \) is defined by the relation†

\[\frac{\zeta(s)}{\zeta(2s)} = \sum_{r=0}^{\infty} \frac{q(\nu)}{R_0^{s^2}}, \]

we have in place of (11)

\[\phi'(M; \alpha_1, \ldots, \alpha_k) = \sum_B \lambda(B) q(\alpha_1 - \beta) \cdots q(\alpha_k - \beta), \]

the sum extending over all \(B \) whose irreducible divisors are divisors of \(M \), and such that \(\deg B = \beta \leq \min (\alpha_1, \ldots, \alpha_k) \). As for the function of §5, let us define \(\psi'(\alpha_1, \ldots, \alpha_k) \) to be the number of sets of quadratfrei polynomials \(A_1, \ldots, A_k \), such that \(\deg A_i = \alpha_i \), \((A_1, \ldots, A_k, M) = 1 \). Then

\[\sum \psi'(\alpha_1, \ldots, \alpha_k) p_0^{\sigma_1 + \cdots + \alpha_k} = \frac{\zeta(s_1) \cdots \zeta(s_k)}{\zeta(2s_1) \cdots \zeta(2s_k)} \frac{\zeta(2s_1 + \cdots + 2s_k)}{\zeta(s_1 + \cdots + s_k)}, \]

so that

\[\psi'(\alpha_1, \ldots, \alpha_k) = \sum_{\beta} (-1)^{\beta} p_0^{\beta'} q(\alpha_1 - \beta) \cdots q(\alpha_k - \beta), \]

the sum being taken over all \(\beta, 0 \leq \beta \leq \min (\alpha_1, \ldots, \alpha_k) \); and \(\beta' \) is the greatest integer \(\leq (\beta + 1)/2 \).

Now, from the definition of \(\phi' \) and \(\psi' \), it is clear that

\[\psi'(\alpha_1, \ldots, \alpha_k, \nu) = \sum_{\deg M = \nu} \mu^2(M) \phi'(M; \alpha_1, \ldots, \alpha_k), \]

\[* \text{That is, if } B = P_1^{\alpha_1} P_2^{\alpha_2} \cdots, \lambda(B) = (-1)^{e_1 + e_2 + \cdots}; \text{see A.P., } \S3. \]

† It is evident that \(q(\nu) = p_0^{\nu} - p_0^{\nu-1} \) for \(\nu \geq 2 \) and that \(q(\nu) = p_0^{\nu} \) otherwise.
and therefore the sum
\[\sum_{\deg M = v}^{\prime} \phi'(M; \alpha_1, \ldots, \alpha_k), \]
taken over quadratfrei \(M \) only, is equal to the right member of (17).

7. The L.C.M. of Polynomials of Degree \(v \). We recall the well known result that
\[x^{p^v} - x = \prod_{\alpha \not{\mid} p} \Theta(\alpha), \]
where \(\Theta(\alpha) \) is the product of the irreducible polynomials of degree \(\alpha \). If now \(L(v) \) is the L.C.M. of the polynomials of degree \(v \), it is evident, to begin with, that if \(P \) is irreducible of degree \(\delta \), then the exponent of the highest power of \(P \) dividing \(L(v) \) is precisely \(\lfloor v/\delta \rfloor \), the greatest integer \(\leq v/\delta \). Therefore
\[L(v) = \prod_{\deg P \leq v} P^{[v/\deg P]} \]
(20)
\[= \prod_{\delta = 1}^{v} \left\{ \prod_{\deg P = \delta} P \right\}^{[v/\delta]} = \prod_{\delta = 1}^{v} \left\{ \Theta(\delta) \right\}^{[v/\delta]}. \]

On the other hand, by (19),
\[F_0(v) = \prod_{\alpha = 1}^{v}(x^{p^\alpha} - x) = \prod_{\alpha = 1}^{v} \prod_{\delta | \alpha} \Theta(\delta) = \prod_{\delta = 1}^{v} \left\{ \Theta(\delta) \right\}^{[v/\delta]}. \]
Comparison with the right member of (20) shows at once that
\[L(v) = F_0(v). \]

8. The Product of Polynomials of Degree \(v \). Formula (3) may be proved very quickly if we make use of the following theorem due to E. H. Moore:*
If \(G \) run through the linear forms \(G = \alpha_0x_0 + \cdots + \alpha_vx_v \), where the coefficients \(\alpha_i \) lie in \(GF(p^n) \), and the \(\alpha_i \) of lowest subscript \(\neq 0 \) is taken \(= 1 \), then
\[\prod G = |x_i^{p^j}|, \quad (i, j = 0, \ldots, v). \]
(21)

Suppose that in this theorem \(x_i = x^{r^{-i}} \) \((i = 0, \ldots, v) \); then the left hand member of (21) has the value

(22) \[\prod_{\alpha=0}^{v} \prod_{\deg E=\alpha} E = \prod_{\alpha=1}^{v} \prod_{\deg E=\alpha} E; \]

the right member of (21) is a familiar determinant, and is easily seen to be equal to

(23) \[\prod_{\alpha=0}^{v-1} (x_{\rho}^{\alpha} - x)^{1+p_{\alpha} + \cdots + p_{\alpha}^{\alpha}}. \]

Therefore, comparing (22) and (23), we have at once the formula to be proved:

(3) \[\prod_{\deg E=\nu} E = \prod_{\alpha=0}^{v-1} (x_{\rho}^{\alpha} - x)^{v_{\alpha}} = F(\nu). \]

9. The Formula for \(Q_{\rho}(\nu) \). Since any \(E \) may be written in the form \(E = GM', \ P^\nu \uparrow G \), it is evident that, for \(\nu = hp + k, \ 0 \leq k < \rho, \)

\[F(\nu) = \prod_{\deg E=\nu} E \]

(24) \[= \prod_{\alpha=0}^{h} \left\{ \prod_{\deg G_i=\nu - \alpha \rho} G_{\rho} \right\} \left\{ \prod_{\deg M_{\alpha}=\nu - \alpha \rho} M_{\rho} q_{\rho}(\nu - \alpha \rho) \right\} \]

\[= \prod_{\alpha=0}^{h} q_{\rho}(\nu - \alpha \rho) \cdot \prod_{\alpha=0}^{h} F(\alpha) \cdot q_{\rho}(\nu - \alpha \rho), \]

where \(q_{\rho}(\nu) \) is the number of polynomials \(E \) of degree \(\nu \) such that \(P^\nu \uparrow E \) for any irreducible \(P \). It is known that* \(q_{\rho}(\nu) = \begin{cases} p_{\rho}^{\nu} - p_{\rho}^{\nu - \rho + 1} & \text{for } \nu \geq \rho, \\ p_{\rho}^{\nu} & \text{otherwise}; \end{cases} \)

so that

(25) \[\sum_{\alpha=0}^{h} \rho^{\alpha} q_{\rho}(\nu - \alpha \rho) = p_{\rho}^{\nu - \beta}. \]

Then the product in (24) is equal to

\[\prod_{\alpha=1}^{h} \left\{ \prod_{\beta=1}^{\alpha} (x_{\rho}^{\beta} - x)^{p_{\rho}^{\alpha - \beta}} \cdot q_{\rho}(\nu - \alpha \rho) \right\}; \]

* A.P., §6.
\[
= \prod_{\beta=1}^{h}(x^{\rho^\beta} - x)^{p_\beta}, \quad e_\beta = \sum_{a=\beta}^{h} p_\beta^{\sigma-a} q_\rho (\nu - \alpha_\rho),
\]
\[
= \prod_{\beta=1}^{h}(x^{\rho^\beta} - x)^{p_\rho^{\rho^\beta}} \quad \text{(by (25))}
\]
\[
= \left\{ \prod_{\beta=1}^{h}(x^{\rho^\beta} - x)^{p_\rho^{\rho^\beta}(h^\rho)} \right\}^{p_\rho h^\rho} = F_\rho^{\rho h^\rho}(h).
\]

By (24) and (26)
\[
F(\nu) = \prod_{a=0}^{h} Q_\rho^{p_\rho^a}(\nu - \alpha_\rho) \cdot F_\rho^{p_\rho^k}(h),
\]
or, writing \(h - \alpha \) for \(\alpha \),
\[
\prod_{a=0}^{h} Q_\rho^{p_\rho^{\alpha+a}}(\alpha_\rho + k) = F(h_\rho + k) F_\rho^{-p_\rho^k}(h)
\]
\[
= R_\rho(h_\rho + k), \quad \text{say}.
\]

It is now easy to evaluate \(Q_\rho \). Indeed, substituting \(h - 1 \) for \(h \) in (27), and raising both members of the resulting equation to the \(p_\sigma \)th power, we have
\[
\prod_{a=0}^{h-1} Q_\rho^{p_\rho^{\alpha+a}}(\alpha_\rho + k) = R_\rho(p_\rho - p_\rho^k)(\nu - \rho),
\]
and therefore
\[
Q_\rho(\nu) = R_\rho(\nu) R_\rho^{-p_\rho^k}(\nu - \rho).
\]

It will be remarked that by (27) \(R_\rho(\nu) \) is a polynomial, so that by (4), \(Q_\rho(\nu) \) is expressed as the ratio of two polynomials.

From (27) we may deduce another result of some interest. Since no polynomial of degree \(<\rho\) is divisible by the \(\rho \)th power of an irreducible polynomial, it is evident that
\[
Q_\rho(k) = F(k), \quad (0 \leq k < \rho):
\]
therefore, by (27), the expression
\[
F(h_\rho + k) F^{-p_\rho^k}(k) F_\rho^{-p_\rho^k}(h)
\]
is a polynomial provided that \(0 \leq k < \rho \).

CAMBRIDGE, ENGLAND