ON n-WEBS OF CURVES IN A PLANE

BY G. BOL

This note contains a proof of Theorem 4 of the list given by W. Blaschke* in a preceding paper.

If \(t_i = \text{const.} \) represents \(n \) sheaves of curves in a plane, then the maximal number of linearly independent relations

\[
\sum_i U_{ik}(t_i) = 0, \quad (k = 1, \ldots, m, i = 1, \ldots, n),
\]

is

\[
N = \frac{1}{2}(n - 1)(n - 2).
\]

Let (1) be any set of such relations; then we consider \(U_{ik}(t_i) \), \((k = 1, \ldots, m)\), for a fixed \(i \) to be the \(m \) coordinates of a point describing a curve \(p_i(t_i) \) in an affine \(m \)-space.

If we can prove that the curves \(p_i(t_i) \) all lie in parallel linear subspaces of dimension \(N \), our theorem is proved, for this means that between the coordinates of every \(p_i \) there exist linear relations with the same constant coefficients, which express \(m - N \) of the coordinates in terms of the other \(N \). And this means that of the \(m \) relations (1) there can be only \(N \) linearly independent.

If we assume our functions \(U_{ik} \) to be differentiable a suitable number of times, however, this last statement comes down to proving that among the vectors

\[
\frac{d}{dt_i} p_i(t_i) = p_i'(t_i), \quad p_i''(t_i), \quad p_i'''(t_i), \ldots,
\]

there cannot be more than \(N \) linearly independent ones.†

We will prove this for \(n = 5, N = 6 \); the proof can easily be extended to all values of \(n \). To avoid the use of many indices, we will write (1) in the form

\[
p_1(u) + p_2(v) + p_3(r) + p_4(s) + p_5(t) = 0.
\]

† This does not really make it necessary to assume the functions (1) to be analytic; from a certain order \(m \) we can always replace (3) by an existence statement for solutions of a differential equation.
As our parameters t_i are given functions of the coordinates in the plane of our curves, and are all independent functions, we can express them as functions of u and v. We then differentiate the vector equation (3) with respect to u and v and find

$$0 = \rho' + \rho_r u + \rho_s v + \rho_t v,$$

$$0 = \rho' + \rho_r u + \rho_s v + \rho_t v;$$

$$0 = \rho''' + \rho'' s + \rho'' t + \rho_r u + \rho_s v + \rho_t v + \rho'' t_{uv},$$

$$0 = \rho'' + \rho'' s + \rho'' t + \rho_r u + \rho_s v + \rho_t v + \rho'' t_{uv};$$

Here L always means a linear combination of the vectors in brackets, and $i = 3, 4, 5$. In this way we get two groups of equations. The first expresses all the derivatives of ρ_1 and ρ_2 as combinations of those of ρ_3, ρ_4, and ρ_5. The latter can be used to prove that of these there can be no more than 6 linearly independent.

If we assume for a moment that the equations (8), (9), (10) are not in a disturbing way dependent, then the result is obvious. For then we can have at the utmost 3 independent vectors ρ_1', of the vectors ρ_1'' one can be expressed by means of the others and ρ_1' as a consequence of (8), so we get only two extra independent vectors, and (9) shows that vectors ρ_1''' can give only one extra dimension. The total number is exactly $3 + 2 + 1 = 6$.
So the only thing that remains to be proved is that relations (8), (9), (10) are really independent. Now in (8) the coefficients of \(p_i^{r'} \) cannot vanish. For \(r_u = 0 \) would mean that \(r \) was a function of \(u \) alone, and therefore that sheaves \(r = \text{const.} \) and \(u = \text{const.} \) would coincide. So (8) really gives us a relation between the \(p_i^{r'} \). To show that (9) gives 2 relations we have to consider the matrix

\[
\begin{vmatrix}
 r_u^2 r_v & s_u^2 s_v & t_u^2 t_v \\
 r_u r_v^2 & s_u s_v^2 & t_u t_v^2 \\
\end{vmatrix}
\]

and show that it is of rank 2. But one of the determinants is

\[
r_u r_v s_u s_v^2 \\
\]

and none of the factors can vanish, the last one since this would imply the dependence of the functions \(r \) and \(s \), which is again impossible. Finally the essential determinant in (10) is equal to

\[
r_u r_v s_u s_v^2 t_u t_v^2 \\
\]

so that from (10) we can really compute \(p_i^{lv} \) as linear combinations of \(p_i^{r''}, p_i^{r'}, p_i^{r} \). We see that there is no danger for dependency of the equations, and our theorem is proved.

Of course if \(n > 5 \), we have a similar proof, only the determinants we have to consider are of higher order. We find

\[
N = n - 2 + n - 3 + n - 4 + \cdots + 2 + 1 = \frac{1}{2} (n - 1)(n - 2).
\]

As a corollary, for \(n = 4 \), we have: If a 2-dimensional surface in \(k \)-space can be generated in two different ways as a translation surface, it lies in a linear three-dimensional subspace.*

For the assumption leads to a vector equation (4) with \(n = 4 \) and our formula gives \(N = 3 \).

* See S. Lie, Leipziger Berichte, 1897, p. 186.