ON THE NUMBER OF APPARENT DOUBLE POINTS ON A CERTAIN V^a_s IN AN S_{2k+1}

BY B. C. WONG

Consider a k-dimensional variety, V^a_s, of order n which is the locus of a single infinity of $(k-1)$-spaces in an S_{2k+1}. It is known that such a V^a_s, if it is rational, that is, if its section by a general S_{k+2} of S_{2k+1} is a rational curve, has

$$b_k = \frac{1}{2}(n - k)(n - k - 1)$$

apparent double points.† The question arises: What is the value of b_k when V^a_s is not rational? The case $k = 1$ is familiar; a curve of order n in an S_3 has

$$b_1 = \frac{1}{2}(n - 1)(n - 2) - p$$

apparent double points, where p is the deficiency of the curve. It is also known that, for $k = 2$, the number of apparent double points on a ruled surface F^n of order n in an S_5 is‡

$$b_2 = \frac{1}{2}(n - 2)(n - 3) - 3p,$$

where p is the deficiency of the curve of intersection of F^n by a general S_4 of S_5. For $k > 2$, the number b_k of apparent double points of a V^a_s in an S_{2k+1} seems to be as yet unknown. It is our purpose in this note to derive a formula for this number.

Now let V^a_s be intersected by a general S_{k+2} of S_{2k+1} in a curve C^n of deficiency p. If $p > 0$, we say that V^a_s is not rational. We shall say that p is also the deficiency of V^a_s and shall regard n and p as the two essential characteristics of the variety as all its other characteristics can be expressed in terms of them for a

* B. C. Wong, On the number of $(q+1)$-secant S_{q+1}'s of a certain V^n_s in an S_{2k+2}^{k+1}, this Bulletin, vol. 39, pp. 392–394.

† By an apparent double point of a V^a_s we mean a secant line of V^a_s passing through a given point of S_{2k+1}. The projection in an S_{2k} of V^a_s will have b_k improper double points each of which is the projection of an apparent double point of V^a_s.

given value of k. Then the formula for b_k must be a function of n and p, and of k also.

Consider the ruled surface F^n in which V_k^n is met by a general S_{k+3} of S_{2k+1}. The projection of F^n, if it is in an S_5, has b_3, given by formula (2), apparent double points; and, if it is in an S_3, has a double curve of order b_1 given by formula (1). On this double curve lie a finite number, j_1, of pinch points. This number is known and will be given subsequently.

Next, consider the planed variety V_k^n common to V_k^n and a general S_{k+4} of S_{2k+1}. The projection in an S_7 of this V_k^n has b_3 apparent double points. Projecting this projection successively upon an S_9, an S_8, and an S_6, we see that the resulting variety in S_6 has b_3 improper double points; that the one in S_8 contains a double curve of order b_2 upon which lie j_2 pinch points; and, finally, that the one in S_4 contains a double surface of order b_1 upon which lies a pinch curve of order j_1.

In general, an S_{k+h+1} of S_{2k+1} meets V_k^n in a V_k^n which is the locus of a single infinity of $(h-1)$-spaces. Now if we let V_k^n be projected upon an S_{2k-i}, $(i = 0, 1, \ldots, h-1)$, of S_{k+h+1}, then we have for projection an h-dimensional variety of order n with a double i-dimensional variety of order b_{k-i} and an $(i-1)$-dimensional pinch variety of order j_{k-i} lying on the double variety. If $i = 0$, the projection in S_{2h} has b_h improper double points.

Suppose $h = k$, and then we have the given V_k^n itself. A general S_{2k-i}-projection of this V_k^n contains a double i-dimensional variety of order b_{k-i} upon which lies an $(i-1)$-dimensional variety of order j_{k-i}.

In order to determine b_k we find it necessary to determine b_h. This determination will be much facilitated if we make use of the two following results already known.

(A) The characteristics $b_0, b_1, \ldots, b_h; j_0, j_1, \ldots, j_{k-1}$ of any V_k^n in r-spaces satisfy the relations*

$$2b_h = 2b_{k-1} - j_{k-1}$$

$$= 2b_{k-2} - j_{k-1} - j_{k-2}$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

* B. C. Wong, *On certain characteristics of k-dimensional varieties in r-space*, this Bulletin, vol. 38, pp. 725-730. The notations used in this paper are slightly different from those adopted in the present work.
1933-1

APPARENT DOUBLE POINTS 757

\[b_1 = j_{h-1} - j_{h-2} - \cdots - j_1 \]
\[b_0 = j_{h-1} - j_{h-2} - \cdots - j_1 - j_0. \]

Here \(b_0 \) is to be taken equal to \(n(n-1)/2 \) and \(j_0 \) is the rank of the curve \(C^a \) common to \(V_k^n \) and an \(S_{k+2}. \)

(B) The number of pinch points on the double curve of a \(V_h^n \) which is the locus of a single infinity of \(S_{h-1}'s \) in an \(S_{2h-1} \) is

\[j_{h-1} = 2(n - h + h^2). \]

Combining these two results, we find that

\[b_h = b_0 - (1/2) \sum_{i=0}^{h-1} j_i = (n - h)(n - h - 1)/2 - k(1 + 1)p/2. \]

If \(h = 1 \) and \(2 \), we have formulas (1) and (2), respectively. For \(h = k \), we have

\[b_k = (n - k)(n - k - 1)/2 - k(k + 1)p/2 \]

as the number of apparent double points on a \(V_h^n \) which is the locus of a single infinity of \(S_{k-1}'s \) in an \(S_{2k+1} \) and this is the number it was our purpose to determine.

The University of California

* If we define \(b_h \) as the number of secant lines of a \(V_h^n \) of an \(S_{2k+2} \) that meet a given line of \(S_{2h+2} \), we see that \(b_0 \) is the number of lines determined by \(n \) given points in a plane.

† We may define \(j_{h-1} \) as the number of tangent lines of a \(V_h^n \) of an \(S_{2k} \) that pass through a given point of \(S_{2k} \). Then, \(j_0 \) is the class of a plane curve which is the plane projection of the curve \(C^a \) of intersection of \(V_k^n \) and an \(S_{k+2} \).

‡ B. C. Wong, On the number of stationary tangent \(S_{h-1}'s \) to a \(V_k \) in an \(S_{2h-k-1} \), this Bulletin, vol. 39, pp. 608–610.