
The eminent French mathematician Georges Humbert who died early in 1921 was the discoverer of a host of elegant and profound geometric and arithmetic facts. Before him the domain of application of algebraic integrals (in particular by means of Abel's theorem), of the theta functions of Poincaré, and of singular Abelian functions had not been exploited in their rich variety of detail. It was here that Humbert was remarkably successful. As two instances of the geometric results contained in the volume under review which are of such extraordinary simplicity as to involve only the rudiments of the calculus, I may mention the following.

The plane algebraic curves whose arc length is a rational function of the coordinates are precisely the caustics by reflection of plane algebraic curves for parallel incident rays.

If a paraboloid of revolution intersects a sphere of radius r in two closed curves, the difference of the spherical areas cut out is independent of the relative orientation of the sphere and paraboloid, and is in fact $4\pi rp$, where p is the parameter of a meridian parabola of the paraboloid.

This volume contains Humbert's work concerning algebraic curves and Abel's theorem. The later volumes are to contain his work on Abelian functions and their applications, and his work in the theory of numbers. To the theory of numbers Humbert devoted the last twenty years of his life, and more than one third of his 45 listed papers fall in this field.

As Painlevé says in his Préface, "As long as men live capable of cultivating mathematics, they will enjoy and admire the perfection of such a work!"

G. D. Birkhoff

The book opens with the Laplace-Liapounoff limit theorem on the approach to the normal probability function of the distribution of the sum $x=x_1+x_2+\cdots+x_n$ of n variates (n large) that are quite independent of the special properties of the distribution functions $F_1(x_1)$, $F_2(x_2)$, $F_n(x_n)$ of the variables x_1, x_2, \cdots, x_n, but are subject to certain conditions concerned with the weight and expected value of any one variate in relation to their sum. It is held that the limit theorems known as the asymptotic laws of probability are not an incidental part of the subject, but, on the contrary, that they form an essential part of the science.

The book is devoted fundamentally to the unification of the subject of asymptotic probability. For this purpose use is made of the fact that the probability function

$$
\phi\left(\frac{x}{\sigma}\right) = \frac{1}{2\pi} \int_0^{x/\sigma^{1/2}} e^{-u^2/2} du,
$$

($\sigma>0$),

satisfies the differential equation