THE CATEGORY OF THE CLASS Lip \((\alpha, p)\)

BY E. S. QUADÉ

A function \(x(s)\) is said to belong to the class \(\text{Lip}(\alpha, p)\) on the interval \((a, b)\) provided

\[
\left\| x(s + h) - x(s) \right\| \equiv \left(\int_{a}^{b} \left| x(s + h) - x(s) \right|^p ds \right)^{1/p} = O(h^\alpha),
\]

where \(0 < \alpha \leq 1\).

There exist continuous functions which belong to no class \(\text{Lip}(\alpha, p)\). Indeed if \(x(s) \in \text{Lip}(\alpha, p)\), then the Fourier coefficients of \(x(s)\), \(a_n, b_n\), are \(O(n^{-\alpha})\). Now a continuous function may be constructed* such that \(\left| a_{ni} \right| > 1/\log n_i\) for an infinite set of values \(\{n_i\}\). Then for such a function

\[
\frac{\left| a_{ni} \right|}{n_i^{-\alpha}} > \frac{n_i^\alpha}{\log n_i} \neq O(1),
\]

that is, \(a_n \not\in O(n^{-\alpha})\) and hence the continuous function with the Fourier coefficients \(a_n\) belongs to no class \(\text{Lip}(\alpha, p)\).

We prove the following theorem.

THEOREM. The subset \(E\) of \(L_p\), \(p \geq 1\), which is \(\sum \text{Lip}(\alpha, p)\) for \(0 < \alpha \leq 1\), is of the first category in \(L_p\).

We employ a method of proof used by S. Banach.† We take the interval \((0, 1)\) as the fundamental interval and assume the functions to be periodic with the period one. Let \(E_{nm}\) be the set of all \(x(s) \in L_p\) such that

\[
\int_{0}^{1} \left| x(s + h) - x(s) \right|^p ds \leq n^p \left| h \right|^{n/m}, \quad (n, m = 1, 2, \ldots).
\]

The sets \(E_{nm}\) are closed. For, let \(x_i(s) \rightarrow x_0(s)\) in \(L_p\). Set

\[
\begin{align*}
y_t(s) &= x_t(s + h) - x_t(s), \\
y_0(s) &= x_0(s + h) - x_0(s),
\end{align*}
\]
where \(h \) is fixed but arbitrary. Then
\[
\| y_t - y_0 \| \leq \| x_t(s + h) - x_0(s + h) \| + \| x_t(s) - x_0(s) \| = 2\| x_t(s) - x_0(s) \| \to 0.
\]
But \(\| y_t - y_0 \| \to 0 \) implies that \(\| y_t \to \| y_0 \| \), that is,
\[
\int_0^1 | x_0(s + h) - x_0(s) |^p ds \leq n^p | h |^{p/m}.
\]
Moreover \(E \subset \sum_{n, m=1}^{\infty} E_{nm} \). For, if \(x_0(s) \subset E \), then for some value \(\alpha_0 \), \(x_0(s) \subset \text{Lip} (\alpha_0, \rho) \); that is, there exists a number \(M \) such that
\[
\int_0^1 | x_0(s + h) - x_0(s) |^p ds \leq M | h |^{\alpha_0 p}.
\]
To complete the proof we have only to show that every set \(E_{nm} \) is non-dense. Suppose, if possible, that \(E_{nm} \) were not non-dense. Then, since \(E_{NM} \) is closed, it contains a sphere \(K \). Let \(\omega(s) \subset K \subset E_{NM} \) be the center of the sphere and \(r > 0 \) the radius. Let \(g(s) \subset L_p \) be a function of \(E \). Since when \(g(s) \subset E \), \(c \cdot g(s) \subset E \), where \(c \) is a constant not zero, we may assume \(\| g \| < r \). Also
\[
\| g(t + h) - g(t) \| > 2N | h |^{1/M}.
\]
Set \(z(s) = \omega(s) + g(s) \). Then \(z(s) \subset L_p \) and
\[
\| z(t + h) - z(t) \| \geq \| g(t + h) - g(t) \| - \| \omega(t + h) - \omega(t) \| > 2N | h |^{1/M} - N | h |^{1/M} \geq N | h |^{1/M};
\]
that is, \(z(s) \) not \(\subset E_{NM} \). But \(\| z - \omega \| = \| g \| < r \); this means \(z(s) \subset K \subset E_{NM} \), a contradiction.

In exactly the same manner we may prove the following result.

The subset \(EC \) of the space \(C \) of continuous functions is of the first category in \(C \).

Brown University