ON A CERTAIN NON-LINEAR ONE-PARAMETER SYSTEM OF HYPERSURFACES OF ORDER n IN r-SPACE

BY B. C. WONG

Consider a linear ∞-system, where

$$\rho \leq \frac{(n+r)!}{n!r!} - 1,$$

of hypersurfaces of order n, which may have σ base points, in an r-space, S. Denote this system by $|W|$.

Now let $\nu_1 + \nu_2 + \cdots + \nu_t$ projectively related curves $C_{11}, C_{12}, \cdots, C_{1\nu_1}, C_{21}, C_{22}, \cdots, C_{2\nu_2}, \cdots, C_{t\nu_t}$ of orders

$$n_{11}, n_{12}, \cdots, n_{1\nu_1}, n_{21}, n_{22}, \cdots, n_{2\nu_2}, \cdots, n_{t\nu_t},$$

respectively, and all of genus ρ, be given in the same r-space S_r. To a point on any one of the curves corresponds a definite point on each of the other curves. We assume that none of the given curves passes through any of the σ base points of $|W|$ and that none of the intersections, if there be any, of any two of the curves is a self-corresponding point. Let $P_{11}, P_{12}, \cdots, P_{t\nu_t}$ be a set of corresponding points, the point $P_{i\nu_i}$ being on the curve C_{ij_i}, $(i = 1, 2, \cdots, t; j_i = 1, 2, \cdots, \nu_i)$. If

$$\nu_1 + 2\nu_2 + \cdots + t\nu_t = \rho \leq \frac{(n + r)!}{n!r!} - 1,$$

there is one and only one hypersurface of the system $|W|$ such that $1, 2, \cdots, t$ of the points of its intersection with each of the ν_1 curves C_{1j_1}, ν_2 curves C_{2j_2}, \cdots, ν_t curves C_{tj_t}, will coincide with $P_{1j_1}, P_{2j_2}, \cdots, P_{tj_t}$, respectively. Denote such a hypersurface by V_{r-1}^n. As the corresponding points describe their respective curves, V_{r-1}^n describes a non-linear one-parameter system, $\{V\}$, of hypersurfaces of order n in S_r. In this paper we propose to determine the number, N_0, the order of the system, of the hypersurfaces of the system passing through a given
point and also the number, N_k, of those tangent to a given k-space for $k = 1, 2, \cdots, r$. The symbol N_r means the number of the hypersurfaces that have each a node.

In the following, we shall give two determinations of the number N_0: the one by the use of the theory of correspondence and the other by the aid of the following known proposition.*

(A) Let there be given q varieties $V_{x_1}^{m_1}, V_{x_2}^{m_2}, \cdots, V_{x_q}^{m_q}$ of orders m_1, m_2, \cdots, m_q, respectively, such that $V_{x_1}^{m_1}$ is the locus of $\infty^1 (x_1-1)$-spaces. If there exists a one-to-one correspondence between the elements of these varieties, then the locus of the $\infty^1 (x_1 + x_2 + \cdots + x_q - 1)$-spaces determined by corresponding elements is a $V_{x_1 + x_2 + \cdots + x_q}$ of order $m_1 + m_2 + \cdots + m_q$.

We now determine N_0 by the theory of correspondence. We commence with the case $\nu_1 = \rho = 2, \nu_2 = \nu_3 = \cdots = \nu_t = 0$. The system $\{V\}$ now consists of those hypersurfaces of the net $|W|$ which pass through pairs of corresponding points on the two given curves C_{11}, C_{12}. The desired number is the number of hypersurfaces of $\{V\}$ passing through a given point, say A. Let us make a hypersurface W_{r-1}^a of $|W|$ pass through A and a point P_{11} of C_{11}. This W_{r-1}^a meets C_{12} in n_{12} points Q_{12}, Q_{12}', \cdots. If one of these points happens to coincide with the point P_{12} corresponding to P_{11} on C_{11}, then W_{r-1}^a is a V_{nr} of $\{V\}$. In general, this does not happen. Now pass another hypersurface W_1^a of $|W|$ through A and one of the points Q_{12}, Q_{12}', \cdots, say Q_{12}. This W_1^a meets C_{11} in nn_{11} points P_{11}, P_{11}', \cdots, to which correspond nn_{11} points P_{12}, P_{12}', \cdots on C_{12}. We see that we have thus established a correspondence on the curve C_{11} such that to each of the points Q_{12}, Q_{12}', \cdots correspond nn_{11} points P_{11}, P_{11}', \cdots and to each of the latter correspond nn_{12} points of the former. If a united point occurs, then the two hypersurfaces W_{r-1}^a, W_1^a become coincident with a V_{nr} of $|W|$. The correspondence being obviously of valence zero, the number of united points, and therefore the order of $\{V\}$, is $n(n_{11} + n_{12})$.

Suppose now $\nu_1 = \rho = 3, \nu_2 = \nu_3 = \cdots = \nu_t = 0$. Choose a W_{r-1}^a of the net $|W|$ that passes through a given point A and a pair

* A full discussion of this proposition is found in Edge, *On the quartic developable*, Proceedings of the London Mathematical Society, (2), vol. 33, pp. 52-65. The statement above is quoted verbatim from B. C. Wong, *On the number of stationary tangent S_{r-1}'s to a V_k^n in an S_{1k+k-1}*, this Bulletin, vol. 39 (1933), pp. 608-610.
of corresponding points \(P_{11}, P_{12} \) on \(C_{11}, C_{12} \). This \(W_{r-1} \) meets the third given curve \(C_{13} \) in \(nn_{13} \) points \(Q_{13}, Q_{13}', \ldots \), none of which, in general, coincides with the point \(P_{13} \) corresponding to \(P_{11} \) and \(P_{12} \). Through each of these points \(Q_{13}, Q_{13}' , \ldots \) there are, according to the result just found, \(n(n_{11} + n_{12}) \) hypersurfaces each containing \(A \) and a pair of points \(P_{11}, P_{12} \). Then on \(C_{13} \) there are \(n(n_{11} + n_{12}) \) points \(P_{13}, P_{13}', \ldots \) corresponding to as many pairs on \(C_{11}, C_{12} \). Now we have on \(C_{13} \) an \((n_{11}n + n_{12}n_{13}n) \)-correspondence of valence zero between the points \(P_{13}, P_{13}', \ldots \) and the points \(Q_{13}, Q_{13}' , \ldots \). The number of united points, and therefore the number of the hypersurfaces of \(\left| W \right| \) passing through \(A \) and a set of corresponding points on \(C_{11}, C_{12}, C_{13} \), is \(n(n_{11} + n_{12} + n_{13}) \).

If we continue reasoning in this manner, we shall find that, for the case \(v_1 = \rho, v_2 = v_3 = \cdots = v_t = 0 \), the order of \(\{ V \} \) is \(n(n_{11} + n_{12} + \cdots + n_{1v}) \) or \(n \sum_{j=1}^{v} n_{1j} \).

Now suppose \(v_1 = \rho - 2, v_2 = 1 \). Then the system \(\{ V \} \) consists of all those hypersurfaces of the \(\infty \)-system \(\left| W \right| \) which contain a set of corresponding points \(P_{1j}, (j = 1, 2, \cdots, v_1) \), on the \(v_1 \) curves \(C_{1j} \) and have a contact with \(C_{21} \) at the point \(P_{21} \) corresponding to \(P_{1j} \). Select a \(W_{r-1} \) of \(\left| W \right| \) passing through a given point \(A \) and a fixed set of points \(P_{1j} \) and having a point of contact with \(C_{21} \). Since a pencil of hypersurfaces of order \(n \) contains \(2(n_{21}n - 1 + p) \) members tangent to a given curve of order \(n_{21} \) and genus \(p \), there are \(2(n_{21}n - 1 + p) \) such hypersurfaces and hence there are as many points of contact \(T_{21}, T_{21}', \cdots \) on \(C_{21} \). None of these, in general, coincides with \(P_{21} \). Now pass a hypersurface \(W_{r-1}' \) of \(\left| W \right| \) through the points \(P_{1j} \) on the curves \(C_{1j} \), tangent to \(C_{21} \) at one of the points \(T_{21}, T_{21}', \cdots \), say \(T_{21} \). There are, according to the result of the preceding paragraph, \(n \sum_{j=1}^{v} n_{1j} \) such hypersurfaces giving rise to as many sets of corresponding points \(P_{1j}, P_{1j}', \cdots \), to which correspond as many points \(P_{21}, P_{21}', \cdots \), on \(C_{21} \). Thus, we have established an \([n \sum_{j=1}^{v} n_{1j}, 2(n_{21}n - 1 + p)] \)-correspondence also of valence zero between the points \(P_{21}, P_{21}', \cdots \), and the points \(T_{21}, T_{21}', \cdots \), on \(C_{21} \). The number of united points in this correspondence which gives the order of \(\{ V \} \) is therefore \(n \sum_{j=1}^{v} n_{1j} + 2(n_{21}n - 1 + p) \).

These particular cases are sufficient to indicate the method used. Reasoning in exactly the same manner for all the differ-
ent values of the ν's satisfying (I), we find the general result

$$N_0 = \sum_{i_1=1}^{r_1} n_{i_1} n + 2 \sum_{i_2=1}^{r_2} (n_{2i} n - 1 + \rho)$$

$$+ 3 \sum_{i_3=1}^{r_3} (n_{3i} n - 2 + 2\rho) + \cdots + t \sum_{i_t=1}^{r_t} [n_{ti} n + (t - 1)(\rho - 1)],$$

or

$$N_0 = \sum_{i=1}^{t} i \sum_{i_i=1}^{n_i} [n_{i_i} n + (i - 1)(\rho - 1)],$$

where $i [n_{i_i} n + (i - 1)(\rho + 1)]$ is the number of hypersurfaces of order n of an ∞^{i-1}-system of hypersurfaces such that i of the points of intersection of each of them with a given curve of order n_{i_i} are coincident.

Now we determine N_0 by the aid of (A). Let the hypersurfaces of $\{W\}$, which may have σ base points, represent upon S_r an r-dimensional variety $\Phi_{r,n-\sigma}$ of order $n'-\sigma$ in a ρ-space S_ρ. The $\nu_1 + \nu_2 + \cdots + \nu_t$ given curves, none of which is supposed to pass through any of the σ base points, are the images of curves Γ_{i_i} of order $n_{i_i} n$ on $\Phi_{r,n-\sigma}$ whose points are also in a one-to-one correspondence. Let $R_{1i_1}, R_{2i_2}, \cdots$ be a set of corresponding points, the point R_{i_i} being on the curve Γ_{i_i}. Corresponding to a hypersurface V_{r-1} of the system $\{V\}$ is a section $\Theta_{r-1}^{n-\sigma}$ of $\Phi_{r,n-\sigma}$ by a $(\rho - 1)$-space which contains a set of points R_{1i_1} on the curves Γ_{i_1}, a set of tangent lines at the points R_{2i_2} on the curves Γ_{3i_3}, a set of osculating planes at the points R_{3i_3} on the curves Γ_{4i_4}, \cdots. The $\infty^1 (\rho - 1)$-spaces of the nature just described form an ∞^1-system to which corresponds our system $\{V\}$ of hypersurfaces. By applying (A) we find that the order of the system of $(\rho - 1)$-spaces is, since the i-dimensional developable of the curve Γ_{i_i} is of order $i [n_{i_i} n + (i - 1)(\rho - 1)]$, the same as (1). Now through a given point A' which may be, without loss of generality, placed upon $\Phi_{r,n-\sigma}$, pass the same number of $(\rho - 1)$-spaces of the system and each such $(\rho - 1)$-space intersects $\Phi_{r,n-\sigma}$ in a $\Theta_{r-1}^{n-\sigma}$ passing through A' to which corresponds a V_{r-1} of $\{V\}$ passing through a given point A, the image of A'. Thus, the determination is complete.

Hitherto we have assumed that none of the given curves
passes through any of the base points of $|W|$ and that none of the intersections, if there be any, of any two of the curves is a self-corresponding point. If, however, a curve C_{ii} passes through one of the base points, we must deduct i, and if any two whatever of the curves intersect in a self-corresponding point, we must deduct unity from the general value of N_0 which we have just derived.

As an example consider a linear ∞^6-system $|K|$ of quartic curves in a plane ϕ with 8 base points. Let three projectively related cubic curves $\gamma^3, \gamma'^3, \gamma''^3$ of genus unity be given in the plane, none of the intersections of the curves being a self-corresponding point. Select a quartic of $|K|$ such that one of its intersections with γ^3 coincides at P, two of its intersections with γ'^3 coincide at P', and three of its intersections with γ''^3 coincide at P'', where P, P', P'' are a set of corresponding points. There are ∞^1 such quartic curves forming a non-linear pencil, \{C\}. Now the quartics of $|K|$ represent upon ϕ a surface Φ^8 of order 8 in S_8 upon which lie three projectively related curves $\Gamma^{12}, \Gamma''^{12}, \Gamma'''^{12}$ all of order 12 and genus 1, of which $\gamma^3, \gamma'^3, \gamma''^3$ are the images in ϕ. The locus of tangent lines of Γ^{12} is of order 24 and the locus of osculating planes of Γ''^{12} is of order 36. Let R, R', R'' be a set of corresponding points on the curves. Then we say that the tangent t' to Γ^{12} at R' and the osculating plane π'' to Γ''^{12} at R'' correspond to the point R on Γ^{12}. The 5-spaces determined by R, t', π'' will describe an ∞^1-system of 5-spaces such that $N_0 = 72$ of them pass through a given point A' which may be placed on Φ^8. Therefore the system \{C\} of quartic curves contains 72 members passing through a given point A of ϕ.

Suppose the curve γ^3 passes through a base point of $|K|$. Then the corresponding curve Γ^{12} on Φ^8 is composed of a Γ^{11} and a line. Discarding the line or deducting unity, we have $N_0 = 71$. If γ'^3 alone contains a base point, the corresponding curve Γ''^{12} degenerates into a line, to be disregarded, and a Γ''^{11} whose developable surface is of order 22. Therefore, we deduct 2 and now $N_0 = 70$. Finally, let γ''^3 alone go through a base point. The curve Γ'''^{12} on Φ^8 is made up of a line, also to be disregarded, and a Γ'''^{11} the locus of whose osculating planes is of order 33. Deducting 3, we now have $N_0 = 69$.

Now let one of the intersections of γ^3, γ'^3 be a self-corresponding-
ing point. Then Γ^{12}, Γ^{13} also have a self-corresponding point $R=R'$ to which corresponds the point R'' on Γ^{12}. There is a linear pencil of 5-spaces passing through the tangent line t' at the self-corresponding point $R=R'$ and containing the osculating plane of Γ^{12} at R''. Disregarding this pencil, we deduct 1 and the result is $N_0=71$. If γ^{13}, γ^{12} have a self-corresponding point in common, then one of the intersections of Γ^{12}, Γ^{13} is a self-corresponding point $R'=R''$ to which corresponds a point R of Γ^{12}. There is a linear pencil of 5-spaces determined by R and the tangent line to Γ^{12} at R' and the osculating plane of Γ^{12} at $R''\equiv R'$. Deducing 1, we have $N_0=71$.

We shall next proceed to determine N_k, the number of the hypersurfaces of $\{V\}$ tangent to a given k-space in S_r. We find it convenient to use the following method. We set up a one-to-one correspondence between the points of a p-space S_p and the hypersurfaces of the ∞^p-system $|W|$. Corresponding to the ∞^{p-1} hypersurfaces of $|W|$ that pass through a given point A are the ∞^{p-1} points of a $(p-1)$-space S_{p-1} of S_p, and corresponding to the hypersurfaces of $\{V\}$ are the points of a curve Δ. Since there are given by (1), as we have seen, N_0 hypersurfaces of $|W|$ passing through A and belonging to $\{V\}$, there must be N_0 points of S_p common to S_{p-1} and Δ. Hence Δ is of order N_0.

Let a k-space S_k be given in S_r. Contact being one condition, there are ∞^{p-1} hypersurfaces of $|W|$ tangent to S_k, and to these contact hypersurfaces correspond ∞^{p-1} points of a locus Σ_{p-1}^M in S_p. By the methods of analytic geometry we find without difficulty that the order M of Σ_{p-1}^M is $M=(k+1)(n-1)^k$. All those hypersurfaces of $|W|$ belonging to $\{V\}$ and tangent to S_k are given by all those points of S_p common to Δ^{N_0} and Σ_{p-1}^M. Therefore, the number of hypersurfaces of $\{V\}$ tangent to S_k is the number of the points in which Δ^{N_k} intersects Σ_{p-1}^M and is therefore equal to $N_k=MN_0=(k+1)(n-1)^kN_0$.

For $k=1,2$, then, $N_1=2(n-1)N_0$ and $N_2=3(n-1)^2N_0$ are, respectively, the number of hypersurfaces of $\{V\}$ tangent to a given line and the number of those tangent to a given plane. If $k=r$, we have $N_r=(r+1)(n-1)^rN_0$ members of the system that have each a node.

The University of California