ON THE LAW OF QUADRATIC RECIPROCITY*

BY ALBERT WHITEMAN

The following proof of the law of quadratic reciprocity, which depends upon a modified form of the Gaussian criterion, is believed to be new.

According to the usual form of this criterion, if p is any integer not divisible by the odd prime q, then p is a quadratic residue or non-residue of q according as in the series

$$p, 2p, 3p, \cdots, (q - 1)p/2,$$

the number of numbers whose least positive remainders (mod q) exceed $q/2$ is even or odd. But, if $\lambda p = \mu q + r$, $q/2 < r < q$, then $2\lambda p = (2\mu + 1)q + 2r - q$, and conversely. Hence we have the transformed criterion: p is a quadratic residue or non-residue of q according as the number of least positive odd remainders in the series:

$$p, 2p, 4p, 6p, \cdots, (q - 1)p$$

is even or odd.†

In the following discussion p, q represent any two odd primes such that $q > p$. Let r denote any odd remainder of (1) such that $p < r < q$. Then, for a suitable λ, $(1 \leq \lambda \leq (q - 1)/2),$

$$2\lambda p \equiv r \pmod{q},$$

whence

$$q + 1 - 2\lambda p \equiv p + q - r \pmod{q},$$

where $p < p + q - r < q$.

Congruences (2) and (3) are identical only for $2\lambda = (q + 1)/2$, $r = (p + q)/2$. Hence the odd remainders of (1) that are greater than p may be arranged in pairs by means of (2) and (3) except

* Presented to the Society, February 23, 1935.

when \((q+1)/2\) is even and \((p+q)/2\) is odd, that is, when \(p, q\) are each of the form \(4n+3\). In this case there is one odd remainder that does not belong to such a pair. If we denote by \(a\) the number of odd remainders greater than \(p\), it follows that \(a\) is even if at least one of the two primes \(p, q\) is of the form \(4n+1\), and odd if both are of the form \(4n+3\). Consequently

\[
a \equiv (p - 1)(q - 1)/4 \pmod{2}.
\]

Now let \(b\) denote the number of those odd remainders in (1) that are less than \(p\). Then \((p/q) = (-1)^{a+b}\). Also, if \(c\) denotes the number of least positive odd remainders in the series

\[
2q, 4q, 6q, \ldots, (p - 1)q \pmod{p},
\]

we have \((q/p) = (-1)^c\). Hence

\[
(p/q)(q/p) = (-1)^{a+b+c}.
\]

To complete the proof, we shall now show that the odd remainders in (1) that are less than \(p\) are identical with the odd remainders in (5), and hence that \(b = c\). Let

\[
2r \equiv \lambda p \pmod{q},
\]

where now \(r\) is an odd remainder such that \(0 < r < p\), and \(1 \leq \lambda \leq (q - 1)/2\). Hence

\[
2r = (2\mu - 1)q + r,
\]

where \(0 < \mu < (p+1)/2\). From this we obtain

\[
(\mu + 1 - 2\mu)q \equiv r \pmod{p}.
\]

Conversely, from (8), where \(1 \leq \mu \leq (p-1)/2\), we obtain (7) with \(0 < \lambda < (q+1)/2\).

Hence, as stated above, the odd remainders in (1) that are less than \(p\) are identical with the odd remainders in (5), so that \(b = c\). The theorem then follows from (4) and (6).