[December,

(25)
$$E\{(x_1 - a_1)^k (x_2 - a_2)^l \cdots (x_r - a_r)^m\} = (p_1 e^{D_1} + p_2 e^{D_2} + \cdots + p_r e^{D_r})^n \cdot x_1^k x_2^l \cdots x_r^m \bigg|_{x_r = -a_r}^{x_1 = -a_1}$$

where $D_1 = \partial / \partial x_1$.

WASHINGTON, D. C.

ON A RESULTANT CONNECTED WITH FERMAT'S LAST THEOREM

BY EMMA LEHMER

E. Wendt* seems to have been the first to introduce the resultant of $x^n = 1$ and $(x+1)^n = 1$ in connection with Fermat's Last Theorem. This resultant can be expressed by means of the following circulant of binomial coefficients

 $\Delta_n = \begin{vmatrix} 1 & C_{n,1} & C_{n,2} & \cdots & C_{n,n-1} \\ C_{n,n-1} & 1 & C_{n,1} & \cdots & C_{n,n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ C_{n,1} & C_{n,2} & C_{n,3} & \cdots & 1 \end{vmatrix}.$

In his book on Fermat's Last Theorem Bachmann[†] proved that if p is an odd prime and if Δ_{p-1} is not divisible by p^3 , then Fermat's equation $x^p + y^p + z^p = 0$ has no solution (x, y, z) prime to p.

S. Lubelsky‡ proved in a recent paper, using the distribution of quadratic residues, that if $p \ge 7$, Δ_{p-1} is not only divisible by p^3 , but by p^8 , thus annulling Bachmann's criterion except for p=3 and p=5.

We shall now show how, by a straightforward manipulation with the above determinant, one can prove much more.

THEOREM 1. Δ_{p-1} is divisible by $p^{p-2}q_2$ for every prime p, where q_2 is the Fermat quotient $(2^{p-1}-1)/p$.

864

^{*} Journal für Mathematik, vol. 113 (1894), pp. 335-347.

[†] Das Fermatproblem, 1919, p. 59.

[‡] Prace Matematyczno-Fizyczne, vol. 42 (1935), pp. 11-44.

PROOF. First add to each element of the last column of Δ_{p-1} the corresponding element of all the other columns. The elements of the last column now become equal to

$$1 + C_{p-1,1} + C_{p-1,2} + \cdots + C_{p-1,p-2} = 2^{p-1} - 1.$$

Next increase each element of the first p-3 columns by the element immediately to the right of it. All the elements of the first p-3 columns are now of the form

$$C_{p-1,k} + C_{p-1,k+1} = C_{p,k+1} = pI_k, \quad (k = 0, 1, \cdots, p-2).$$

Since, as is well known, I_k is an integer for p a prime, it follows that p is a factor of each of the first p-3 columns. Also $(2^{p-1}-1)$ comes out of the last column, and hence Δ_{p-1} is divisible by $(2^{p-1}-1)p^{p-3}=p^{p-2}q_2$, which is the theorem.

For example, if p = 5,

	1	4	6	4		1	4		6	15				
$\Delta_4 =$	4	1	4	6		4	1		4	15				
	6	4	1	4	-	6	4	:	1	15				
	4	6	4	1		4	6	•	4	15				
=	5	10	6	15	I	15·5²	1	1		2	6	1	- 53 3	
	5	5	4	15			72	1		1	4	1		,
	10	5	1	15			5~	2		1	1	1	$= -3^{\circ} \cdot 3$	· J.
	10	10	4	15				2		2	4	1		

It is interesting to notice that although Theorem 1 is in no way dependent on the solvability of Fermat's equation, nevertheless it enables us to replace Bachmann's criterion by the following one.

If Δ_{p-1} is not divisible by p^{p-1} , then $x^p + y^p + z^p = 0$ has no solution (x, y, z) prime to p.

This in fact is merely a restatement of Wiefrich's criterion,^{*} which states that if p does not divide q_2 , Fermat's equation has no solution in integers prime to p.

For example, since we have seen that Δ_4 is not divisible by 5⁴, it follows from our criterion that $x^5+y^5+z^5=0$ has no solutions (x, y, z) prime to 5.

1935.]

^{*} Journal für Mathematik, vol. 136 (1909), pp. 293-302.

Before proceeding further it may be of interest to give a short, though perhaps less elementary proof of Theorem 1, based directly on the definition of the resultant of two polynomials as the product $f(\alpha_1) \cdot f(\alpha_2) \cdot \cdot \cdot f(\alpha_n)$, where f is one polynomial and the α 's are roots of the other.

$$\Delta_{p-1} = \prod_{j=1}^{p-1} [(\epsilon_j + 1)^{p-1} - 1],$$

where ϵ_i are all the (p-1)st roots of unity.

For $\epsilon_i = 1$, we get the factor $2^{p-1} - 1$, and for $\epsilon_i = -1$, we get -1. For $\epsilon_i = \epsilon$, any complex root of unity, we have

$$(\epsilon+1)^{p-1}-1=C_{p-1,1}\epsilon+C_{p-1,2}\epsilon^2+\cdots+\epsilon^{p-1}.$$

But since, for p a prime,

$$C_{p-1,k} = (-1)^k + pc_k,$$

where the *c*'s are integers,* we have

$$\begin{aligned} (\epsilon+1)^{p-1}-1 &= -\epsilon + \epsilon^2 - \epsilon^3 + \cdots + \epsilon^{p-1} + pf(\epsilon) \\ &= \epsilon(\epsilon^{p-1}-1)/(\epsilon+1) + pf(\epsilon) = pf(\epsilon), \end{aligned}$$

where f(x) is a polynomial with integral coefficients. Hence

$$\Delta_{p-1} = - (2^{p-1} - 1) \prod_{\epsilon_j \neq \pm 1} pf(\epsilon_j) = - (2^{p-1} - 1) \cdot p^{p-3} \prod f(\epsilon_j),$$

where $\prod f(\epsilon_i)$ is an integral symmetric function of the roots of $(x^{p-1}-1)/(x^2-1)$ and hence an integer. Hence Δ_{p-1} is divisible by $p^{p-2}q_2$.

In comparing Theorem 1 with that of Lubelsky we see that Theorem 1 says more, except for p = 7, in which case Theorem 1 guarantees divisibility of Δ_6 by 7⁵ instead of 7⁸. On examining this case more closely we find that as a matter of fact $\Delta_6 = 0$. Indeed, we have in general the following theorem.

THEOREM 2. $\Delta_n = 0$ if and only if n = 6k.

PROOF. In order that $\Delta_n = 0$ it is both necessary and sufficient that $x^n = 1$ and $(x+1)^n = 1$ have a root ρ in common. But the roots of $x^n = 1$ are the *n*th roots of unity. Hence we can write

^{*} Lucas, American Journal of Mathematics, vol. 1 (1878), pp. 229-230.

 $\rho = \cos \theta + i \sin \theta$, but since at the same time ρ is a root of $(x+1)^n = 1$, we have

$$|\rho + 1| = 1 = (\cos \theta + 1)^2 + \sin^2 \theta = 2 + 2 \cos \theta,$$

or $\cos \theta = -1/2$ and $\theta = \pm 2\pi/3$. This condition will be satisfied if and only if $\rho = \omega$ or ω^2 , while $(\rho+1) = -\omega^2$ or $-\omega$, and hence $(\rho+1)^n = 1$ if and only if *n* is a multiple of 6.

One can easily show by adding to each element of the first and second column of Δ_{6k} (written in determinant form) the corresponding elements of every third column, that the elements of the two resulting columns will be equal and hence that $\Delta_{6k} = 0$, but the writer has not been able to show from the circulant definition of Δ_n that $\Delta_n \neq 0$ if n is not a multiple of 6.

In conclusion we give a short table of Δ_{p-1} .

Þ	Δ_{p-1}
3	$-3 = -(2^2 - 1)$
5	$-375 = -(2^4 - 1) \cdot 5^2$
7	0
11	$-210\ 736\ 858\ 987\ 743 = -(2^{10}-1)\cdot 11^8\cdot 31^2$
13	0
17	-1 562 716 604 038 367 719 196 682 456 673 375 =
	$-(2^{16}-1)\cdot 17^{14}\cdot (3^3\cdot 5\cdot 7^3\cdot 257)^2$
19	0
τ.	

It appears from this table of Δ_{p-1} , and can be shown without difficulty for any even *n*, that Δ_n is $-(2^n-1)$ times a perfect square. It can also be shown that Δ_d divides Δ_n if *d* divides *n*.

BETHLEHEM, PENNSYLVANIA

1935.]