bers \(p^{n+i+m}(E_n-M) \) are all finite. Thus we have the following theorem.

THEOREM 5. Let \(M \) be a common boundary of three distinct domains \(D_k \), \((k = 1, 2, 3)\), such that \(D_k \) is u.l.i.-c. for \(0 \leq i \leq n_k \), and \(n_1 \geq n_2 \geq n_3 \). Then \(n_1 + n_2 \leq n - 3 \), and if there exists \(m > 0 \) such that \(n_1 + m \leq n - 2 \) and \(n - (n_1 + m) - 1 \leq n_3 \), the Betti numbers \(p^{n+i+m}(E_n-B) \) and \(p^i(B) \), \((0 \leq i \leq n_3)\), are all finite.*

The University of Michigan

ON THE NORMAL RATIONAL \(n \)-IC

BY HELEN SCHAUCH ADAMS

1. **Notation.** A point \(\alpha \) of \(n \)-space may be represented by the binary form \((at)^n = (\alpha_1 t_1 + \alpha_2 t_2)^n \) with non-symbolic coefficients \(\alpha_0, \cdots, \alpha_n \). If \((at)^n \) is a perfect \(n \)th power \((t_1)^n \), \(\alpha \) will be the point on \(C^n \) of \(S_n \) whose parameter is \(t_1 \), or briefly the point \(t_1 \). Also if \((at)^n \) is a binary form, all points which satisfy the linear apolarity condition \((\alpha a)^n = 0 \) lie on the \(S_{n-1} a \) with coordinates \(a_0, \cdots, a_n \). The \(S_{n-p} (t_1)^p (\beta t)^{n-p} \), with parameters \(\beta_0, \cdots, \beta_{n-p} \), is the osculating \((n-p)\)-space \(O_{n-p, t_1} \) to \(C^n \) at \(t_1 \).† This notation is helpful in the development of some of the properties of the normal rational \(n \)-ic curve. Many of the analogous properties for the case \(n = 5 \) have been found by other methods by A. L. Hjelmann.‡

2. **The Axes of \(C^n \).** An axis of \(C^n \) is a line which lies in \((n-1) O_{n-1} \)'s to \(C^n \). The axes of \(C^n \) are given by

\[(at)^n = (t_1 t)(t_2 t) \cdots (t_{n-1} t)(st) \],

parameters \(s_0, s_1, \) the \(t_i \) being parameters of points of \(C^n \).

* Thus, although we have no actual example, it is conceivable that there exists, in \(E_5 \), a common boundary \(M \) of three domains \(D_k \) each of which is u.l.i.-c. for \(i = 0, 1 \). If so, \(p^i(D_k) \) is infinite for \(k = 1, 2, 3 \); and \(p^i(E_5-M) \) is finite.

† Grace and Young, *The Algebra of Invariants*, 1903, Chapter 11.

Any point \((zt)^n\) of the \(O_{n-1,t_1}\) determines \(n\) \(O_{n-1,1}'\)'s whose \(t\)'s are roots of \((zt)^n = 0\). Those \(t\)'s which are not \(t_1\) determine the only axis through \(Z\) not in \(O_{n-1,t_1}: (t_1t)(t_2t) \cdots (t_{n-1}t)(zt)\). This axis determines the unique image point \(Z': (t_1t)(t_2t) \cdots (t_{n-1}t)(t't)\) in \((t't)(rt)^{n-1}\), parameters \(r_0, \cdots, r_{n-1}\).

Then the points of any axis to \(C^n\) of \(S_n\) and the points of \(C^n\) are in one-to-one correspondence, and there are \(n\) axes through any point \(Z\) of an \(O_{n-1}\) only one of which lies outside \(O_{n-1}\). There is a one-to-one correspondence between the axes of \(C^n\) not in \(O_{n-1,t_1}\) and the points of \(O_{n-1,1}'\) which establishes the collineation between pairs of points in two \(O_{n-1,1}'\)'s. Similarly, there are \(\infty^{n-s-1}\) axes in an \(O_{n-1,1}'\), and the points of each of the \(\infty^{n-s}\) \(O_{n-s-1,1}'\)'s not in \(O_{n-s,t_1}\) correspond one-to-one with the points of \(O_{n-s,1}'\).

3. Axes in an \(R_i\). Any \(R_i\) meets any \(S_{2n-2j}\) in an \(S_{n-j}\) whose points correspond, by the collineation of \(\S2\), to those of an \(E_{n-j}\) in \(O_{2n-2j}\). But \(S_{n-j}\) and \(E_{n-j}\) together fix a point \(P\) of \(O_{2n-2j}\). Then in the two \(O_{2n-1}\)'s are determined two points \(P\) and \(P'\) which are images in the collineation, since the two points are intersections of corresponding \(S_{n-j}\)'s. But since such points lie on one axis, \(P\) and \(P'\) determine an axis which lies in \(R_i\). Then any \(R_i\) contains an axis of \(C^n\), and the variety of axes from an \(S_i\) which lies in an \(O_{n-1}\) is a \(V^j_{j+1}\).

4. The Osculants to \(C^n\). The \((i-1)st\) osculant to \(C^n\) at \(t_1\) is \((t_1t)^{n-i+1}(s_1t)(s_2t) \cdots (s_{i-1}t)\) as \(t_1\) varies.* Then the variety of tangents to it is

\[(t_1t)^{n-i}(s_1t)(s_2t) \cdots (s_{i-1}t)(\alpha t)\], parameters \(\alpha_0, \alpha_1\).

This variety meets the \(O_{n-i}\) \((s_1t)(s_2t) \cdots (s_{i-1}t)(s_i)(\beta t)^{n-i}\), parameters \(\beta_0, \cdots, \beta_{n-i}\) in the curve

\[C_{t_1}^{n-i}: (t_1t)^{n-i}(s_1t)(s_2t) \cdots (s_i)(s_1t)(\beta t)\], as \(t_1\) varies,

which is of the \((n-i)th\) order. Obviously the \(O_s\)'s to \(C_n^{i+1}\) form \(O_{s-1}\)'s to \(C_n^{i-1}\) and \(C_{t_1}^{n-i}\) is the \(i\)th osculant of \(C^n\) at \(t_1\).

* The first osculant is discussed by G. Castelnuovo in Studio dell'involutezione generale sulle curve razionali mediante la loro curva normale dello spazio a \(n\) dimensioni, Atti Reale Istituto Veneto, (6), vol. 4 (1885–6), p. 1173; and by St. Jolles, Die Theorie der Osculanten und des Sehnensystems der Raumcurve IV Ordnung II Species, Aachen, 1886.
Thus the ith osculant C_{n-i}^{n-i} is the locus of the points of intersection of the tangents to C_{n-i+1}^{n-i+1} after the $n-i$ lines common to the variety of the tangents and O_{n-i} are removed. It is normal and rational.

5. The n-ahedra in an $O_{n-1,n}$ Determined by O_{n-1}’s from the Points of r. Consider any point $Y(yt)^n$ on the line $r(\alpha y+\beta z)^n$ which is not an axis, and does not meet C^n. The n O_{n-1}’s from Y to C^n intersect the O_{n-1,s_1} in the O_{n-2} $(t_is_1)(\alpha t)^{n-2}$ parameters $\alpha_0, \cdots, \alpha_{n-2}$, where the t_i’s are roots of $(t_1y)^n=0$. Now, the n O_{n-2}’s from Y must osculate the first osculant by §4, and they form an n-ahedron in O_{n-1,s_1}. If $Z(at)^n$ is a second point of r, the n-ahedron determined by any point of r will have vertices of the type

$$\prod_{j=1}^{n-1} (\alpha t_{1,i+j} + \beta r_{1,i+j})(s_1t),$$

where the t_i’s are roots of $(t_1y)^n=0$, and the r_i’s are roots of $(r_1z)^n=0$.

Let $\sum a_{ik}x_i\alpha_3\alpha_4$, $(i, k = 0, 1, \cdots, n)$, be a quadric V_{n-2}^{n-2} in O_{n-1,s_1}. In order that any two n-ahedra (1) determined by α_1, β_1 and α_3, β_2 be self polar with respect to V_{n-2}^{n-2}, $n(n-1)/2 + n$ conditions must be satisfied, one more than the number required to determine V_{n-2}^{n-2}. Then the two n-ahedra can be self polar with respect to one V_{n-2}^{n-2} only if the determinant Δ of all the expressions $a_{ik}x_i\alpha_3\alpha_k$ vanishes. But if Δ is arranged so that the $n(n-1)/2$ rows which express the condition that the first n-ahedron be self polar appear first and the n rows relating to the second follow, then Δ can be so reduced that the nth and $(n-1)$st rows involve the same functions of the t_i’s, r_i’s, α_1, and β_1, while the last two rows involve those same functions of the t_i’s, r_i’s, α_2, and β_2. The differences of the elements of the two rows will then be constants in each case, and will be the same constants, so that the value of Δ is zero.

Thus the O_{n-1}’s from points of a line which is not an axis and does not meet C^n form n-ahedra in an O_{n-1,s_1}. Obviously, the vertices of all the n-ahedra determined by r form a locus K^{n-1} which is in one-to-one correspondence with C_t^n and is thus of order $n-1$. Also, there exists a single quadric variety V_{n-2}^{n-2} in O_{n-1,s_1} with re-
spect to which the \(n \)-ahedra determined by all points of \(r \) are self polar.

6. **Apolarities of Points Related to \(C^n \).** Let \(B(bt)^{n-1} \) and \(D(dt)^{n-1} \) be two points of \(O_{n-1,s_1} \) which are polar with respect to \(V_{n-2}^2 \). Then if \((et)^{2n-2} \equiv (bt)^{n-1}(dt)^{n-1} \), the condition that \(B \) and \(D \) be polar is \((ae)^{2n-2} = 0 \). But the \((n - 1) \) \(O_{n-2} \)'s to \(C_1^t \) from \(B \) and \(D \) have points of contact which are roots of \((tb)^{n-1} = 0 \) and \((td)^{n-1} = 0 \), respectively. All \(2n - 2 \) of these points are represented by \((et)^{2n-2} = 0 \). Also the curve \(C_1^t \) meets \(V_{n-2}^2 \) in the points which are roots of \((at)^{2n-2} = 0 \). And since \((ae)^{2n-2} = 0 \), \((et)^{2n-2} \) and \((at)^{2n-2} \) are apolar.

Let \((t_1)^{(i)}t \), \((i = 1, \ldots, s) \), be \(s \) points of \(C^n \). The \(O_{n-1} \)'s at these points meet in an \(S_{n-s} \) containing a \(C_1^t \). Now, any of the \(\infty^{s-1} S_{n-1} \)'s through \(S_{n-s} \) meet \(C^n \) in points which are roots of

\[
\sum_{i=0}^{s} k_i (t_1^{(i)}t) (t_1)^{n-1} \equiv (my)^n = 0.
\]

Also any point \(Y \) of \(S_{n-s} \) determines points of osculation of \(O_{n-1} \)'s whose parameters are roots of \((yt)^n = 0 \), where \(s \) of the \(t_i \)'s are the \(t_i^{(i)} \)'s. But since \(Y \) lies in all \(s \) \(O_{n-1,t_i^{(i)}} \)'s, \((my)^n = 0 \).

Then there are the following apolarity relationships among points related to \(C^n \). The binary form representing the points of osculation of the \(O_{n-2} \)'s to \(C_1^t \) from any two points of \(O_{n-1,s_1} \) which are polar with respect to \(V_{n-2}^2 \), and the binary form representing the points of intersection of \(C_1^t \) with \(V_{n-2}^2 \) are apolar. Also, the \(\infty^{s-1} \) binary forms of the \(n \)th order representing points of intersection with \(C^n \) of \(S_{n-s} \) through the \(S_{n-s} \) of an \(s \) osculants are apolar to the binary form of the \(s \)th order representing the \(s \) points of \(C^n \) which determine the \(s \)th osculant.

7. **\(K_{t_i}^{n-1} \) Related to Two Bundles of \(S_{n-2} \)'s in \(O_{n-1,s_1} \).** The \(\infty^{n-2} S_{n-1} \)'s through \(r \) meet \(O_{n-1,t_1} \) in \(\infty^{n-2} S_{n-s} \)'s forming the bundle \((P_{t_i}) \):

\[
(bt)(t_1)(bt)^{n-2}, \text{ parameters} \delta_0, \ldots, \delta_{n-2}.
\]

Since if \(r \) is not an axis, every \(O_{n-1} \) meets \(r \) in a point, \(O_{n-1,t_1} \) does, and the vertex of \((P_{t_i}) \) is this point. Call it \(Y_{t_i} \). If \((P_{r_i}) \) is a similar bundle in \(O_{n-1,r_1} \), an \(S_{n-s-1} \) of \((P_{t_i}) \) will correspond to an \(S_{n-s-2} \) of \((P_{r_i}) \) if they are cut out by the same \(S_{n-k} \). Then corresponding lines of \((P_{t_i}) \) and \((P_{r_i}) \) are
(t_1)(a)(a^{n-2}(b))$, parameters $\delta_0, \delta_1, \alpha$'s fixed,

and

$(r_1)(a)(a^{n-2}(b))$, parameters $\delta_0, \delta_1, \alpha$'s fixed.

By the projectivity of §2, Y_t is a point of K_1^{n-1}. If a line of $O_{n-1,t}$ is defined by S_{n-3}'s which contain an axis, it meets its image in $O_{n-1,r}$ in the point of K_1^{n-1}:

$$(s_1^{(1)})(s_1^{(2)})(s_1^{(n-2)})(t_1)(r_1).$$

Then if r is not an axis, K_1^{n-1} is the locus of points of intersection of corresponding lines of (P_t) and (P_r) when the S_{n-3}'s defining the line of (P_t) contain a fundamental axis, and the vertex of (P_t) is a point of K_1^{n-1}. If r is an axis, it meets $O_{n-1,t}$ in a point Y of K_1^{n-1} which corresponds in (P_r) to Y_r, the image of Y_t of (P_t). Thus if r is an axis, all K_1^{n-1}'s of $O_{n-1,t}$'s not defining r are the intersections of corresponding lines of two bundles (P_t) and (P_r).

By the correspondence between S_t's of (P_t) and (P_r), it can be shown that the bisecant lines, \cdots, the j-secant S_{j-1}'s, \cdots, the $(n-2)$-secant S_{n-3}'s of K_1^{n-1} are formed by the intersections of corresponding S_t's, \cdots, S_j's, \cdots, S_{n-3}'s of (P_t) and (P_r).

8. The Principal $(n-2)$-ic of S_{n-1} Associated with C_n of S_n.

Let C^n be the image curve of C^n projected upon any S_{n-1} from a vertex S_{t-1} not containing points of C^n. It is obvious that this image curve is of the nth order and that it is in one-to-one correspondence with C^n. Obviously the image in S_{n-1} of any line meeting the vertex S_{t-1} is a point.

By §2, the variety of axes to C^n is easily seen to be of order $2n-2$. Likewise, the order of the variety of axes meeting a line r of S_{t-1} which is not itself an axis, is $2n - 2$. Now from any point Y of r can be passed n O_{n-1}'s to C^n which determine, $n-1$ by $n-1$, n axes through Y, and the dimensionality of the variety of axes through r is therefore 2. Then the axes meeting r form a surface V_{2}^{2n-2}. Of this surface, r is an n-fold directrix since every point of it is n-fold on the surface. Now any S_{n-1} through S_{t-1} also passes through r, which counts for n in its intersection with V_{2}^{2n-2}. The residual intersection of S_{n-1} with V_{2}^{2n-2} is then $n-2$ lines of V_{2}^{2n-2}; or every S_{n-1} through S_{t-1} contains $n-2$ lines of V_{2}^{2n-2}. It has been shown that the image of an axis through r
is a point; obviously the image in S_{n-i} of an S_{n-1} through the vertex S_{i-1} is an S_{n-i-1}. Since there are ∞^{n-i} positions of S_{n-1}'s through S_{i-1} and ∞^{n-i} S_{n-i-1}'s in S_{n-i}, * then every S_{n-i-1} of S_{n-i} contains $n-2$ points of the locus of images of axes through r. Since there are ∞^1 such images, the locus of the images in S_{n-i} of axes through any line r of the vertex of projection not an axis is a curve of the $(n-2)$nd order called a principal $(n-2)$-ic of S_{n-i} associated with C^n. There are ∞^{2i-4} such principal $(n-2)$-ics, one for each position of r in S_{i-1}. It can be shown that if r is an axis, the principal curve in S_{n-i} is an $(n-3)$-ic.

9. Projection of the K^n_{i-1}'s of $O_{n-1,i}$. We see that n of the O_{n-2}'s of §4 from a point Y of r (not an axis) intersect $n-1$ by $n-1$ in vertices of an n-ahedron since each is an S_{n-1}. Thus the vertices of such an n-ahedron are images of $O_{n-1,i}$ of axes to C^n which meet r. It was also shown in §4, that these vertices lie on a K^n_{i-1} of $O_{n-1,i}$. Then an O_{n-1} meets the V^n_{2n-2} of axes from r in K^n_{i-1}, and V^n_{2n-2} has upon it ∞^1 curves, K^n_{i-1}. Finally, the $\infty^1 K^n_{i-1}$'s of the O_{n-1}'s project into the principal $(n-2)$-ic of S_{n-i}.

10. Projection of the n-ahedra of O_{n-2} to C^{n-1}, n Odd. It is easily seen that there is an nth order involutorial relation between the points Y and the vertices of the n-ahedra mentioned above. Then from §9 it follows that there is an nth order involution between the points of r and those of any K^n_{i-1}, and that there is an involution of order n defined by the points of r and those of its principal $(n-2)$-ic in S_{n-i}, (n odd). Since the O_{n-1}'s which intersect $O_{n-1,i}$ in faces of an n-ahedron discussed here meet r, the resulting O_{n-2}'s determine, with r, S_{n-i}'s which meet S_{n-i} in S_{n-i-1}'s. Then the projection in S_{n-i} of the faces of the n-ahedra are S_{n-i-1}'s which, since the original sides were O_{n-2}'s to C^n_{i-1}, have $(n-2)$-fold contact with C^n_{i-1}, and are inscribed in the principal $(n-2)$-ic at n points of the fundamental involution † on it, n odd. (When $i=2$, the S_{n-3}'s are stationary.)

* For the proof that S_n contains $\infty^{(n-m)(m+1)} S_m$'s, ($m<n$), see G. Veronese, La superficie omaloide normale a due dimensioni e del quarto ordine dello spazio a cinque dimensioni e le sue proiezioni nel piano e nello spazio ordinario, Memorie dell'Accademia dei Lincei, (3), vol. 19 (1884), p. 347.

† For the definition and some discussion of the fundamental involution see L. Berzolari, Sulle curve razionali di uno spazio lineare ad un numero qualunque di dimensioni, Annali di Matematica, (2), vol. 21 (1893), pp. 1–25; A. Brill,
11. The Projection of an Apolarity of §6, n Odd. For the s points of C^n mentioned in §6 may be chosen s points of one group of the fundamental involution. In this case, the S_{n-s} containing the sth osculant passes through a point Y of r and contains s axes. By the projection into S_{n-s-i}, these s axes determine points of one group of the fundamental involution of the principal $(n-2)$-ic from r. Since S_{n-s} meets r, it projects by the usual method into an $S_{n-s-i+1}$ and the S_{n-1}'s through S_{n-s} project into S_{n-i-1}'s in S_{n-i}. Then in S_{n-i}, the sth order binary form representing s points of one group of the fundamental involution on the principal $(n-2)$-ic from r is apolar to the ∞^{s-i} nth order binary forms, each representing the points of C^n lying in S_{n-i-1}'s through the $S_{n-s-i+1}$ containing the image of any sth osculant of C^n, n odd.

12. Projected $(n-1)$-ahedra in S_{n-i} Associated with the Points of $K_{t_i}^{n-1}$ in an S_{n-2} of O_{n-1,t_i}. Since $K_{t_i}^{n-1}$ is of the $(n-1)$st order, its points are given by $(s,t)^{n-1}(dt)\equiv (st)^n$, d fixed. Now any $S_{n-2}(ct)(at)^{n-2}\equiv (et)^n$, parameters $\alpha_0, \ldots, \alpha_{n-2}$, will meet $K_{t_i}^{n-1}$ in points whose parameters are the roots of $(se)^n=0$, of which there are obviously $n-1$. Then also an S_{n-2} in an O_{n-1} will meet $K_{t_i}^{n-1}$ in $n-1$ points.

Now by the fundamental projectivity, every point of S_{n-2,t_i} is the image of an axis (§2) and since S_{n-2,t_i} contains ∞^{n-2} points, these axes form an $n-1$ dimensional variety. This variety is also composed of the ∞^1 S_{n-2}'s which are homologous to S_{n-2,t_i} in the other O_{n-1}'s; that is, which are cut out of the $\infty^1 O_{n-1}$'s by the axes of the variety. Among the axes are those which meet S_{n-2,t_i} in the $n-1$ points of $K_{t_i}^{n-1}$ and which must meet every other O_{n-1} in $n-1$ points (in accordance with §5, r is not an axis). These $n-1$ points where the axes from the points in S_{n-2,t_i} of $K_{t_i}^{n-1}$ meet an O_{n-1} determine that O_{n-1}. If, however, the O_{n-1,δ_i} is one of those defining an axis to one of these points, then the axis lies completely in O_{n-1,δ_i}. In this case, the S_{n-2} homologous to that of O_{n-1,t_i} is defined by the $n-2$ points where the other special axes meet O_{n-1,δ_i} and the point of r from which O_{n-1,δ_i} was drawn.

Since each $S_{n-2, i}$ passes through a point of r which lies in the vertex S_{i-1}, $S_{n-2, j}$ will project into an S_{n-i-1} of S_{n-i}. Also every $S_{n-2, i}$ contains a point of the axis which connects a point of r to a point of K_{i}^{n-1}. Now this whole axis determines a point of K_{i}^{n-1} and, since it meets r, must project into a point of the principal $(n-2)$-ic of S_{n-i} associated with r. However, the point common to this axis and $S_{n-2, i}$ is on r and thus projects into no portion of S_{n-i}. Thus the images of the other $(n-2)$ $S_{n-2, i}$'s in S_{n-i} contain the same point of the principal $(n-2)$-ic of S_{n-i} associated with r. Then, finally, the ∞^{n-1} $S_{n-2, i}$'s associated with the ∞^{n-1} S_{n-1}'s of any $O_{n-1, i}$ project into S_{n-i} in $(n-1)$-ahedra whose faces are S_{n-i}'s, every $n-2$ of which meet in a point of the principal $(n-2)$-ic of S_{n-i} associated with r.

13. Projection of the Variety of Axes from Points of a Line of $O_{n-1, i}$. This V_{∞}^2 was defined in §3. Obviously, the lines of the variety project into lines which envelop a conic. If the line of $O_{n-1, i}$ is a bisecant of K_{i}^{n-1}, the conic has two points in common with the principal $(n-2)$-ic.

14. On the Image of an Axis. The points determining an axis define, $n-2$ at a time, the $(n-2)$nd osculants $C_{i_1, i_2, \ldots, i_{n-4}}$ to each of which the axis is a tangent (§4). Now every axis not meeting the vertex of projection, S_{i-1}, determines with it an S_{i+1} which meets S_{n-1} in a straight line, the image of the axis. Then the image of an axis, determined by $n-1$ points of C^{n}, is tangent to the $n-1$ images of the $n-1$ quadratic osculants determined by these points $n-2$ at a time.

Since the S_{i+1} determined by the image of the axis and S_{i-1} contains an axis (§3), any line of S_{n-i} may be regarded as the projection of an axis provided $i>(n-2)/2$. The axis of which any line in S_{n-i} is the image corresponds to $n-1$ points of C^{n}, which project into $n-1$ points of C^{n}, so that any line of S_{n-1} corresponds to $n-1$ points of C^{n}.