A PARADOX OF LEWIS'S STRICT IMPLICATION

BY TANG TSAO-CHEN

The postulates for Lewis's strict implication are nine in number,* namely,

[11.1] \(pq \rightarrow qp \)
[11.2] \(pq \rightarrow p \)
[11.3] \(p \rightarrow pp \)
[11.4] \((pq)r \rightarrow p(qr) \)
[11.5] \(p \rightarrow \sim (\sim p) \)
[11.6] \(p \rightarrow q.q \rightarrow r: \rightarrow .p \rightarrow r \)
[11.7] \(p.p \rightarrow q: \rightarrow .q \)
[19.01] \(\diamond pq \rightarrow \diamond p \)
[20.01] \((\exists p, q): \sim (p \rightarrow q). \sim (p \rightarrow \sim q). \)

By the operations of substitution, adjunction, and inference, a body of theorems is obtained. But the following theorem, which is a paradox of the strict implication, is not explicitly mentioned in Lewis's book.

Any two of the first eight postulates are such that each is deducible from the other, if \(p \rightarrow q \) be interpreted as '\(p \) is deducible from \(q \).

In order to prove this theorem we assume the following eight theorems.†

1. \(p \sim p = q \sim q \)
Def. \(0 = q \sim q \)

* The references are to Symbolic Logic, by Lewis and Langford, 1932.
† For the proof of these theorems see the paper, The theorem "\(p \rightarrow q = p \rightarrow q \) and Huntington's relation between Lewis's strict implication and Boolean algebra, by Tang Tsao-Chen in this Bulletin, vol. 42 (1936), pp. 743-746.
2. \[p \sim p = 0 \]

3. \[p0 = 0 \]

\text{Def.} \quad i = \sim \diamond 0

4. \[pq \sim p. = .i \]

5. \[p \sim p. = .i \]

6. \[p \sim q. \sim .i \]

7. \[p \sim q. = .i . p \sim q \]

8. \[p \sim q. = .pq = p. \]

Note that the Theorems 4 and 5 are particular cases of the following theorem.

9. \text{If } p \sim q \text{ is asserted, then } p \sim q. = .i.

\begin{align*}
\text{[Hyp.]} & \quad p \sim q & \quad (1) \\
\text{[(1), 8.]} & \quad pq = p & \quad (2) \\
\text{[12.11]} & \quad pq = p. = .pq = p & \quad (3) \\
\text{[(2), (3)]} & \quad pq = p. = .p = p & \quad (4) \\
\text{[11.03, 12.7]} & \quad p = p. = .p \sim p & \quad (5) \\
\text{[(4), (5), 5.]} & \quad pq = p. = .i & \quad (6) \\
\text{[(6), 8.]} & \quad p \sim q. = .i & \quad (7)
\end{align*}

From the above theorem it is very easy to prove the following theorem.

10. \text{If } p \sim q \text{ and } r \sim s \text{ are both asserted, then}

\[p \sim q. \sim .r \sim s \]

\text{and}

\[r \sim s. \sim .p \sim q. \]

\begin{align*}
\text{[Hyp.]} & \quad p \sim q & \quad (1) \\
\text{[(3), 9.]} & \quad p \sim q. = .i & \quad (2) \\
\text{[Hyp.]} & \quad r \sim s & \quad (3)
\end{align*}
[5), 9.] \(r \rightarrow s. = i \)
[(4), (6)] \(p \rightarrow q. = r \rightarrow s \)
[11.03] \((7) = (1)(2) \)
[(7), (8)] \((1)(2) \)
[11.2] \((1)(2) \rightarrow (1) \)
[12.17] \((1)(2) \rightarrow (2) \)
[(9), (10)] \((1) \)
[(9), (11)] \((2) \).

The paradox stated above is a particular case of Theorem 10, and therefore requires no further proof.

NATIONAL WU-HAN UNIVERSITY,
WUCHANG, CHINA

THE BETTI NUMBERS OF CYCLIC PRODUCTS

BY R. J. WALKER

1. Introduction. In a recent paper† M. Richardson has discussed the symmetric product of a simplicial complex and has obtained explicit formulas for the Betti numbers of the two- and three-fold products. Acting on a suggestion of Lefschetz, we define a more general type of topological product and apply Richardson’s methods to compute the Betti numbers of a certain one of these, the “cyclic” product.

2. Basis for \(m \)-Cycles of General Products. Let \(S \) be a topological space and \(G \) a group of permutations on the numbers 1, \(\cdots \), \(n \). The \textit{product of \(S \) with respect to \(G \),} \(G(S) \), is the set of all \(n \)-tuples \((P_1, \cdots, P_n) \) of points of \(S \), where \((P_{i_1}, \cdots, P_{i_n}) \) is to be regarded as identical with \((P_1, \cdots, P_n) \) if and only if the permutation \((i_1; \cdots; i_n) \) is an element of \(G \). A neighborhood of \((P_1, \cdots, P_n) \) is the set of all points \((Q_1, \cdots, Q_n) \) for which \(Q_i \) belongs to a fixed neighborhood of \(P_i \). It is not difficult to verify that the

† M. Richardson, \textit{On the homology characters of symmetric products}, Duke Mathematical Journal, vol. 1 (1935), pp. 50–69. We shall refer to this paper as R.