DIVISORS OF SECOND-ORDER SEQUENCES*

BY MARSHALL HALL

1. Introduction. Given a recurrence of second order

\[u_{n+2} = au_{n+1} - bu_n, \]

where \(a \) and \(b \) are integers, and the initial values \(u_0, u_1 \) (integers) are terms of a sequence \((u_n) \) satisfying (1), it is an interesting problem to determine whether or not a given prime \(p \) will divide some \(u_n \) of the sequence. Morgan Ward \(\dagger \) reduced this problem to the standard problem on recurrences of determining the restricted periods modulo \(p \) of (1) and an auxiliary recurrence of second order. His method is somewhat indirect and uses the assumption that \(\mu \), the restricted period of (1) modulo \(p \), is even. This paper obtains a similar reduction of the problem by a somewhat more direct method and makes no assumption on \(\mu \).

2. Some Exceptional Cases. The appearance of \(p \) as a divisor of some \(u_n \) evidently depends solely upon the values of \(a, b, u_0, u_1 \), modulo \(p \). If \(p \) stands in certain relations to these numbers, the theory of the sequence \((u_n) \) modulo \(p \) is different from the general theory. It is convenient to treat these unusual cases separately, and then exclude them from further consideration.

CASE 1. \(p | a, p | b \).
Here \(p | u_n \) for \(n \geq 2 \).
CASE 2. \(p | a, p | b \).
Here \(u_n \equiv a^{n-1}u_1 \pmod{p} \) for all \(n \geq 2 \). Hence either \(p \) divides all \(u_n \) for \(n \geq 1 \) or none.

CASE 3. \(p | a, p | b \).
Here \(u_{2n} \equiv (-b)^nu_0, u_{2n+1} \equiv (-b)^nu_1 \pmod{p} \); and \(p \) divides all or none of \(u_{2n} \), and all or none of \(u_{2n+1} \).

CASE 4. \(p | a, p | b \), \(p \) divides either \(u_0 \) or \(u_1 \).
Then \(p \) divides either \(u_{\mu n} \) or \(u_{\mu n+1} \), where \(\mu \) is the restricted period of \((u_n) \) modulo \(p \).

CASE 5. \(p | (a^2 - 4b), p | a, b, u_0, u_1 \).
Then \(p \) cannot be 2 since \(p | a \). Let \(a \equiv 2a' \pmod{p} \), then

* Presented to the Society, April 20, 1935.
1937-1

DIVISORS OF SEQUENCES

\[b \equiv a^{t^2} \pmod{p}, \]

and we consider \(u_{n+2} = 2a' u_{n+1} - a'^2 u_n \), giving

\[u_n = a^{n-1}(a' u_0 + (u_1 - a' u_0)n). \]

Now \(a' u_0 \not\equiv 0 \pmod{p} \). Hence \(u_n \) can be divisible by \(p \) if \(u_1 - a' u_0 \equiv 0 \pmod{p} \), but not if \(u_1 - a' u_0 \equiv 0 \pmod{p} \), that is, if \(2u_1 - au_0 \equiv 0 \pmod{p} \).

CASE 6.

\[
\begin{vmatrix}
 u_0 & u_1 \\
 u_1 & u_2
\end{vmatrix} = -u_1^2 + au_1 u_0 - bu_0^2, \quad p|u_0, u_1.
\]

Here

\[
\frac{u_0}{u_1} \equiv \frac{u_1}{u_2} \equiv s \not\equiv 0 \pmod{p} \quad \text{and} \quad u_n \equiv s^nu_0 \pmod{p},
\]

and \(u_n \) is never divisible by \(p \).

3. The General Case. The characteristic polynomial of (1),

\[f(x) = x^2 - ax + b = (x - \alpha_1)(x - \alpha_2), \]

has distinct roots, since \(p \) does not divide the discriminant \((\alpha_2 - \alpha_1)^2 = a^2 - 4b \). Hence we may write

\[u_n = c_1 \alpha_1^n + c_2 \alpha_2^n, \]

where

\[c_1 = \frac{u_0 \alpha_2 - u_1}{\alpha_2 - \alpha_1}, \quad c_2 = \frac{u_1 - u_0 \alpha_1}{\alpha_2 - \alpha_1}. \]

In the field \(K(\alpha_1) \), which is either the rational or a quadratic field, the conjugate \(\alpha_2 \) is included as \(\alpha_2 = a - \alpha_1 \). In this field let \(P \) be a prime ideal dividing \(p \). Now

\[N(P) = p^2 \quad \text{if} \quad \left(\frac{a^2 - 4b}{p} \right) = -1, \quad \text{and} \]

\[N(P) = p \quad \text{if} \quad \left(\frac{a^2 - 4b}{p} \right) = +1. \]

We note that in this field \(P \) does not divide either \(\alpha_1 \) or \(\alpha_2 \) as \(p \) does not divide \(\alpha_1 \alpha_2 = b \), nor does \(P \) divide either the numerator or denominator of \(c_1 \) or \(c_2 \), as \(P \) does not divide \((\alpha_2 - \alpha_1)^2 = a^2 - 4b \) or \((u_1 - u_0 \alpha_1)(u_0 \alpha_2 - u_1) = -u_1^2 + au_1 u_0 - bu_0^2 \). This will permit us to take indices of these quantities with respect to a primitive root modulo \(P \).

Lemma. \(\mu \) has the value \((N(P)-1)/(\text{Ind } (\alpha_1/\alpha_2), N(P)-1) \).

It is well known that \(\mu \) is the rank of apparition of \(p \) in the sequence \(u_n = (\alpha_1^n - \alpha_2^n)/(\alpha_1 - \alpha_2) \), that is, the least positive \(n \) for which \(u_n \equiv 0 \pmod{p} \). For this it is sufficient that \(u_n \equiv 0 \pmod{P} \), since a rational number divisible by \(P \) is also divisible by \(p \).

While reading this, I've noted that the content is related to the divisibility of sequences, particularly in the context of modular arithmetic and characteristic polynomials of sequences. The text delves into the specific conditions under which a term in the sequence becomes divisible by a prime number, providing a detailed analysis of the circumstances leading to divisibility. The characteristic polynomial plays a crucial role in determining these conditions, with the discriminant providing insights into the nature of the roots. The text concludes with a lemma relating to the rank of apparition of a prime in a sequence, which is a fundamental concept in number theory.
This yields \(\alpha_1^n \equiv a_2^p \pmod{P} \), whence taking indices, \(n \text{Ind } \alpha_1 \equiv n \text{Ind } \alpha_2 \pmod{(N(P)-1)} \), or \(n \text{Ind } (\alpha_1/\alpha_2) \equiv 0 \pmod{(N(P)-1)} \): The least positive value of \(n \) that satisfies this condition is \((N(P)-1)/(\text{Ind}(\alpha_1/\alpha_2), N(P)-1) \), and consequently \(\mu \) must have this value.

Theorem. The number \(p \) will divide some \(u_n \) of the sequence \((u_n) \) satisfying (1) if and only if \(\mu \), the restricted period of (1), divides \(M \), the restricted period of

\[
U_{n+2} = (au_0 - 2u_1)U_{n+1} - (u_1^2 - au_1u_0 + bu_0^2)U_n.
\]

If \(c_1a_1^n + c_2a_2^n \equiv 0 \pmod{P} \), then

\[
n \text{Ind} \left(\frac{\alpha_1}{\alpha_2} \right) \equiv \text{Ind} \left(\frac{-c_2}{c_1} \pmod{(N(P)-1)} \right),
\]

and conversely. Now a congruence \(A \equiv B \pmod{C} \) has a solution \(n \) if and only if \((A, C) | (B, C) \). This becomes

\[
\left(\text{Ind} \left(\frac{\alpha_1}{\alpha_2} \right), N(P) - 1 \right) | \left(\text{Ind} \left(\frac{-c_2}{c_1} \right), N(P) - 1 \right).
\]

By the lemma

\[
\left(\text{Ind} \left(\frac{\alpha_1}{\alpha_2} \right), N(P) - 1 \right) = \frac{N(P) - 1}{\mu}.
\]

The lemma also yields

\[
\left(\text{Ind} \left(\frac{-c_2}{c_1} \right), N(P) - 1 \right) = \frac{N(P) - 1}{M},
\]

since \(-c_2/c_1 = (u_0\alpha_2 - u_1)/(u_0\alpha_1 - u_1)\), and \(u_0\alpha_1 - u_1 \) and \(u_0\alpha_2 - u_1 \) are the roots of \(x^2 - (au_0 - 2u_1)x + (u_1^2 - au_1u_0 + bu_0^2) = 0 \), which is the characteristic of the recurrence for \(U_n \). By substitution we obtain as a necessary and sufficient condition that \(p \) divide some \(u_n \):

\[
\frac{N(P) - 1}{\mu} \bigg| \frac{N(P) - 1}{M} \quad \text{or} \quad M \bigg| \mu.
\]

We note that the exceptional cases are those in which \(p \) divides any one of \(u_0, u_1 \), the coefficients of the two recurrences, and the discriminant of (1).

Yale University