having only a finite number of invariant points, this configuration of invariant lines becomes a finite number of bundles, having vertices at the invariant points. If however, \(m > 0 \), any line \(t_\tau \) in the plane \(\pi \) meets \(\Delta_m \), and \(t_\tau \) is invariant and is counted \(m \) times in the complex. Thus the plane \(\pi \) is a singular plane for the complex. We shall see further that \(t_\tau \) is also singular in \(\mathcal{I} \).

4. **The Singular Lines of \(\mathcal{I} \).** When \(t = l \), then \(C_3(t) \) is indeterminate, since \(l \) meets every \(C_3(\alpha, \beta) \) twice. But the point \(L \) where \(l \) meets \(\pi \) under \(\tau \) an image \(L', \) and since \(\mathcal{I} \) is involutorial, any line of the bundle \((L') \) may be considered as the conjugate of \(l \).

When \(t \) meets \(\pi \) in a fundamental point \(R \) of \(\Gamma \), then \(t' \) is any generator of a ruled surface \(\Phi_{4r} \) of order 4 times the multiplicity \(r \) of \(R \) in \(\Gamma \). In order to see this, consider the plane curve \(\phi_\tau \) in \(\pi \), the principal curve corresponding to \(R \) in \(\Gamma \). Each point of \(\phi_\tau \) may be taken as \(R' \) and through this point passes one bisecant of \(C_3(t) \). Thus \(\phi_\tau \) is simple on \(\Phi_{4r} \). But, in \(\pi \) lie three bisecants of \(C_3(t) \) and each of these meets \(\phi_\tau \) in \(r \) points, thus making each bisecant of multiplicity \(r \) on \(\Phi_{4r} \). The plane \(\pi \) then meets \(\Phi_{4r} \) in \(\phi_\tau \) and in three lines each of multiplicity \(r \), making a total intersection of order \(4r \).

When \(t = t_\tau \), any line in \(\pi \), then any point of \(\tau_n \), the image of \(t \) under \(\Gamma \), may be taken as \(T' \) and thus \(t_\tau \) is transformed by \(\mathcal{I} \) into a ruled surface of order \(4n \).

5. **The Special Linear Complex with Axis \(l \).** We have already seen that the conjugate \(l' \) of an arbitrary line \(l \) does not meet the line \(l \) of the vertices of the pencils of cones, and since \(\mathcal{I} \) is involutorial, a line \(t \) belonging to the special linear complex with axis \(l \) must have for its conjugate a line \(t' \) which also belongs to this special complex. The Plücker coordinates of \(t \) will be such that if \(l \) belongs to the regulus of (1) to which \(l \) does not belong, so will the Plücker coordinates of \(t' \) be such that \(l' \) belongs to this regulus also. Thus the special linear complex with axis \(l \) is invariant as a whole, but not line by line.

ERRATUM

On page 877 of the December, 1936, issue of this Bulletin, in line 16, change \(O(n^{-\ell}) \), to \(o(n^{-\ell}) \).