SOME FORMULAS FOR FACTORABLE POLYNOMIALS IN SEVERAL INDETERMINATES†

BY LEONARD CARLITZ

1. Introduction. By a factorable polynomial‡ in the $GF(p^n)$ will be meant a polynomial in the indeterminates x_1, \ldots, x_k, which factors into a product of linear factors in some (sufficiently large) Galois field:

$$G \equiv G(x_1, \ldots, x_k) = \prod_{j=1}^{m} (\alpha_{j0} + \alpha_{j1}x_1 + \cdots + \alpha_{jk}x_k).$$

It is frequently convenient to consider separately those G (of degree m) in which x_k^m (or any assigned x_i^m) actually occurs; we use the notation G^* to denote such a polynomial. In the case $k = 1$, the polynomials G reduce to ordinary polynomials in a single indeterminate; in this case G and G^* are identical.

In this note we extend certain results§ for $k = 1$ to the case $k > 1$. For polynomials G^* the extensions may (roughly) be obtained by merely replacing p^n by p^{nk}; for arbitrary G the generalizations are not quite so simple.

2. The μ-Function. For G of degree m, we put $|G| = p^{nm}$; then

$$\xi^*(w) = \sum_{G^*} \frac{1}{|G|^w} = (1 - p^{n(k-w)})^{-1},$$

$$\xi(w) = \sum_{G} \frac{1}{|G|^w} = \left\{ (1 - p^{n(1-w)})(1 - p^{n(2-w)}) \cdots (1 - p^{n(k-w)}) \right\}^{-1},$$

the sums extending over all G^*, G, respectively.

Let $f(m)$ be the number of (non-associated) G of degree m, $f^*(m)$ the number of G^*; from the first of these formulas it follows that $f^*(m) = p^{nk_m}$, and from the second, $f(m) = [k + m - 1, m] p^{nm}$, where

† Presented to the Society, December 31, 1936.
Taking the reciprocal of (1) and (2), we have

\begin{equation}
\sum_{G} \frac{\mu(G)}{|G|^w} = 1 - p^{n(k-w)},
\end{equation}

and

\begin{equation}
\sum_{G} \frac{\mu(G)}{|G|^w} = \prod_{j=1}^{k} (1 - p^{n(j-w)}),
\end{equation}

where \(\mu(G) \) is the Möbius function. From (4) it follows that

\[\sum_{\deg G = m} \mu(G) = \begin{cases} -p^m k & \text{for } m = 1, \\ 0 & \text{for } m > 1; \end{cases} \]

on the other hand, from (5) follows

\[\sum_{\deg G = m} \mu(G) = \begin{cases} (-1)^n [k, m] p^{nm(m+1)/2} & \text{for } m \leq k, \\ 0 & \text{for } m > k, \end{cases} \]

where \([k, m]\) is defined by (3).

3. The Divisor Functions. If \(\tau(G) \) denotes the number of divisors of \(G \), then it is clear from (1) that

\begin{equation}
\sum_{G} \frac{\tau(G)}{|G|^w} = (1 - p^{n(k-w)})^{-2},
\end{equation}

while from (2) it follows that

\begin{equation}
\sum_{G} \frac{\tau(G)}{|G|^w} = \prod_{j=1}^{k} (1 - p^{n(j-w)})^{-2}.
\end{equation}

From (6) we have at once

\[\sum_{\deg G = m} \tau(G) = (m + 1) p^{nmk}. \]

Similarly by means of (7), we may evaluate \(\sum \tau(G) \), summed over all \(G \) of degree \(m \):

\[\sum_{\deg G = m} \tau(G) = \sum_{m-i+j} [k + i - 1, i] [k + j - i, j] p^{nm}. \]

For the function \(\sigma_t(G) = \sum |D|^t \), summed over all divisors of \(G \), there are the formulas
From the latter it is clear that
\[\sigma_l(G) = \zeta(w)\zeta(w - t), \quad \sum_{G} \frac{\sigma_l(G)}{|G|^w} = \zeta^*(w)\zeta^*(w - t). \]

The corresponding formula for \(\sum \sigma_t(G) \), summed over all \(G \) of degree \(m \), is not so simple in general. However, if \(t = k \), the product \(\zeta(w)\zeta(w - k) \) is itself a zeta-function, and thus we get from the first equation in (8)
\[\sum_{\deg G = m} \sigma_t(G) = \left[2k + m - 1, m \right] p^{nm}. \]

4. The \(\phi \)-Functions. Obviously, the Euler \(\phi \)-function cannot be defined in terms of a reduced residue system. Instead we define \(\phi_s(G) \) as the number of polynomials \(A \) of degree \(s \) such that \((A, G) = 1 \). For \(k = 1, s = \deg G \), \(\phi_s(G) \) reduces to the Euler function (for polynomials in a single indeterminate). From the definition it is easily seen that
\[\sum_{s=0}^\infty \phi_s(G) p^{-nw} = \sum_{(A, G) = 1} |A|^{-w} = \zeta(w) \prod_{P|G} (1 - |P|^{-w}), \]

and therefore, by equating coefficients of \(p^{-nw} \),
\[\phi_s(G) = \sum_{D|G} \mu(D) f(s - d), \]

where \(d = \deg D \), and the sum is over all divisors of degree \(\leq s \). For \(s \geq \deg G \), the sum is over all \(D \); for \(s = \deg G \), we shall omit the subscript, so that
\[\phi(G) = \sum_{D|G} \mu(D) f(s - d), \]

summed over all divisors of \(G \).

Similarly, \(\phi_s^*(G) \) is the number of \(A^* \) of degree \(s \) such that \((A, G) = 1 \). Then
\[\phi_s^*(G) = \sum_{D|G} \mu(D) f^*(s - d) = |G|^s \sum_{D|G} \mu(D) |D|^{-b}. \]

Again for \(s = \deg G \), we write simply \(\phi^*(G) \), and we have
(12) \[\phi^*(G) = |G|^k \sum_{D \mid G} \mu(D) |D|^{-k} = |G|^k \prod_{P \mid G} (1 - |P|^{-k}), \]
where \(P \) denotes a typical irreducible divisor of \(G \).

For \(\phi^*(G) \) the sum function (taken over \(G^* \)) is quite simple. Substituting from (12), we find

\[
\sum_{G^*} \frac{\phi^*(G)}{|G|^w} = \sum_{D^*} \frac{\mu(D)}{|D|^w} \sum_{E^*} \frac{|E|^k}{|E|_w} = \frac{\zeta^*(w - k)}{\zeta^*(w)}
\]

and therefore

\[
(14) \quad \sum_{\text{deg } G^* = m} \phi^*(G) = p_{2nmk} - p_{nk(2m-1)} \quad \text{for } m \geq 1.
\]

In the second place, we may extend the sum in the left member of (13) over all \(G \):

\[
\frac{\phi^*(G)}{|G|^w} = \sum_{D} \frac{\mu(D)}{|D|^w} \sum_{E} \frac{|E|^k}{|E|_w} = \frac{\zeta(w - k)}{\zeta(w)}
\]

from which follows

\[
\sum_{\text{deg } G = m} \phi^*(G) = \sum_{m=} (-1)^i[k, i][k + j - 1, j]p_{n(k+1)}j p_{n(i+1)/2}.
\]

For \(\phi(G) \) the formulas corresponding to (13) and (14) are

\[
(15) \quad \sum_{G^*} \frac{\phi(G)}{|G|^w} = \sum_{D^*} \frac{\mu(D)}{|D|^w} \sum_{E^*} \frac{f(e)}{|E|_w} = \frac{\zeta(w - k)}{\tilde{\zeta}^*(w)},
\]

and

\[
\sum_{\text{deg } G^* = m} \phi(G) = [k + m - 1, m]p_{nm(k+1)}
\]

\[
- [k + m - 2, m - 1]p_{nm(k+1)}.
\]

Finally, if the sum on the left of (15) be taken over all \(G \),

\[
\sum_{G} \frac{\phi(G)}{|G|^w} = \sum_{D} \frac{\mu(D)}{|D|^w} \sum_{E} \frac{f(e)}{|E|_w} = \frac{1}{\zeta(w)} \sum_{e=0}^{\infty} \frac{f^2(e)}{p_{new}},
\]

and therefore

\[
\sum_{\text{deg } G = m} \phi(G) = \sum_{m=} (-1)^i[k, i][k + j - 1, j]^2p_{n(i+1)/2}p_{2nij}.
\]
We remark that more general \(\phi \)-functions may be defined, and the corresponding sum functions constructed exactly as above. For brevity the formulas are omitted.

5. The \(q \)-Functions. We now consider polynomials \(L \) that are not divisible by the \(e \)th power of an irreducible. The number of \(L \) of degree \(m \) will be denoted by \(q_e(m) \); the number of \(L^* \) by \(q_e^*(m) \). For the latter function, it is evident that

\[
\sum_{m=0}^{\infty} q^*_e(m) p^{-nmw} = \prod_{P^*} \left(1 + | P |^{-w} + \cdots + | P |^{-(e-1)w}\right) = \frac{\zeta^*(w)}{\zeta^*(ew)},
\]

where \(P^* \) denotes a typical irreducible starred polynomial. Then

\[
q^*_e(m) = \begin{cases}
 p^{nmk} & \text{for } m < e, \\
 p^{nmk} - p^{nk(m-e+1)} & \text{for } m \geq e.
\end{cases}
\]

On the other hand, since

\[
\sum_{m=0}^{\infty} q_e(m) p^{-nmw} = \frac{\zeta(w)}{\zeta(ew)} = \sum_{i=0}^{\infty} [k + i - 1, i] [k, j] p^{ni} p^{-nw i} \sum_{j=0}^{k} (-1)^j [k, j] p^{nj(i+1)/2} p^{-new j},
\]

we have in place of (16),

\[
q_e(m) = \sum_{m=i+e} (-1)^i [k + i - 1, i] [k, j] p^{ni} p^{nj(i+1)/2}.
\]

Next, let

\[
Q(m) = \prod_{\deg L = m} L, \quad Q^*(m) = \prod_{\deg L^* = m} L^*.
\]

If we put

\[
D_s = D_s(x_1, \ldots, x_k) = \left| x_i^{nj} \right|, \quad (i, j = 0, \ldots, k),
\]

where \(x_0 \) is replaced by 1, and

\[
\Delta_s = \frac{D_s(x_1, \ldots, x_k)}{D_s(x_1, \ldots, x_{k-1})},
\]

then for

\[
F^*_e(m) = \Delta_m \Delta_{m-1}^{p^e_k} \cdots \Delta_1^{p^e_k(m-1)},
\]
we may show, exactly as in the case $k = 1$, that

\begin{equation}
\prod_{s=0}^{h} \left\{ Q^*(se + r) \right\}^{\mu_{nk(h-s)}} = R^*(he + r) \left\{ P^*(h) \right\} - \epsilon_{nkhr}
\end{equation}

\begin{equation*}
= R^*(he + r),
\end{equation*}

say, where $0 \leq r < \epsilon$. From (18) follows at once

\begin{equation}
Q^*_e(m) = R_e(m) \left\{ R_e(m - e) \right\} - \epsilon_{nkhr}.
\end{equation}

For $Q(m)$ the generalization is not entirely satisfactory. In place of (18) we have

\begin{equation*}
\prod_{s=0}^{h} \left\{ Q_e(se + r) \right\}^{f(h-s)} = \frac{F(he + r)}{\prod_{j=0}^{h-1} D_{h-i}^{f(je + r)}},
\end{equation*}

where

\begin{equation*}
F(m) = D_mD_{m-1}^{(3)} \cdots D_1^{(m-1)}
\end{equation*}

(the product of all polynomials of degree m). However, there seems to be no simple formula like (19) for $Q_e(m)$.

DUKE UNIVERSITY

† See p. 743 of the paper in this Bulletin referred to above.