PROOF OF THE NON-ISOMORPHISM OF TWO COLLINEATION GROUPS OF ORDER 5184*

BY F. A. LEWIS

Introduction. Let S denote the collineation

$$\rho x_r = e^{r^{-1}}x'_r, \quad (r = 1, \ldots , n), \quad \epsilon = \cos \left(\frac{2\pi}{n}\right) + i \sin \left(\frac{2\pi}{n}\right),$$

and T the collineation

$$\rho x_r = x'_{r+1}, \quad (r = 1, \ldots , n), \quad x'_{n+1} \equiv x'_1.$$

The abelian group $\{S, T\}$ of order n^r is invariant under a group† C_n of order

$$n^r \left(1 - \frac{1}{p_1^2}\right) \left(1 - \frac{1}{p_2^2}\right) \cdots \left(1 - \frac{1}{p_m^2}\right),$$

where p_1, p_2, \ldots , p_m are the distinct prime factors of n. The order of C_6 is 5184.

Winger‡ has discussed briefly the monomial group of order $(r+1)!n^r$ that leaves invariant the variety

$$x_0^n + x_1^n + x_2^n + \cdots + x_r^n = 0.$$

This group is generated by the symmetric group of degree $r+1$ and an abelian group of order n^r in canonical form. For $r = 3$ and $n = 6$ there results a group G of order 5184 which has been treated by Musselman.§ The purpose of this note is to prove that G and C_6 are not simply isomorphic. The proof consists in showing that the number of collineations of period 2 in G exceeds the number of collineations of period 2 in C_6.

* Presented to the Society, June 18, 1936.
† In fact, C_n is the largest collineation group in n variables containing $\{S, T\}$ invariantly, the coefficients and variables being in the field of complex numbers. (Author's dissertation, Ohio State University, 1934.)
Proof of the Non-Isomorphism of \(G \) and \(C_6 \). The group \(C_6 \) is generated by \(\{S, T\} \) and the two collineations

\[
V: \quad \rho x_r = \sum_{c=1}^{6} \epsilon^{(r-1)(c-1)} x'_c, \quad (r = 1, \ldots, 6),
\]

\[
W: \quad \rho x_r = \epsilon^{-(r-1)/2} x'_r, \quad (r = 1, \ldots, 6),
\]

satisfying the following relations:

\[
V^4 = W^{12} = 1, \quad V^2W = WV^2, \quad V^{-1}SV = T^{-1}, \quad W^{-1}SW = S, \quad (VW)^3 = V^2 = (WV)^3, \quad W^6 = S^3, \quad V^{-1}TV = S, \quad W^{-1}TW = S^{-1}T.
\]

The order of \(H = \{V, W\} \) is 576. This group may be constructed by the following chain of invariant subgroups and an independent proof that the order of \(C_6 \) is 5184 follows readily.

\[
H = \{V, G_{288}\}, \quad G_{288} = \{W^4VW^3V^3, G_{96}\}, \quad G_{96} = \{W^2, G_{32}\}, \quad G_{32} = \{W^2(W^2V)^3, G_{16}\}, \quad G_{16} = \{(W^2V)^3V, G_4\}, \quad G_4 = \{S^3, T^3\}.
\]

Since \(G_4 \) is contained in \(\{S, T\} \) which is invariant under \(H \), the order of \(C_6 \) is \(576 \cdot 36/4 = 5184 \).

If \(Q \), of order 144, represents the quotient group of \(C_6 \) with respect to \(\{S, T\} \), each element of \(Q \), being a co-set of \(C_6 \), represents 36 collineations of \(C_6 \) that transform \(\{S, T\} \) into itself according to the same isomorphism of \(\{S, T\} \) with itself.* There are 24 collineations \(S'T^a \) of period 6 in \(\{S, T\} \); if \(S \) is transformed into a particular \(S'T^a \), the collineation \(S'T^m \) into which \(T \) is to be transformed may be selected in six ways. Let \(K \) represent a class of 144 collineations of \(C_6 \) corresponding to the 144 distinct possible sets \((j, k, l, m) \). That is, \(K \) contains one and only one collineation from each of the 144 augmented co-sets of \(C_6 \). The square of \(A \cdot S'T^a \), an arbitrary collineation of the class \(K \) from the co-set to which \(A \) belongs, may be expressed in the form \(A^2S^mT^n \) and hence is of period 2 only if \(A^2 \) is in \(\{S, T\} \). That is, a necessary condition that \(A \cdot S'T^a \) be of period 2 is that \(A^2 \) be commutative with both \(S \) and \(T \). Among any class \(K \) there are only 8 collineations \(B \) such that the corresponding sets of values \((j, k, l, m) \) satisfy the congruences arising from the conditions that \(B^2 \) transform \(S \) into \(S \) and \(T \) into \(T \).

* It may easily be proved that the 36 collineations of \(\{S, T\} \) are the only collineations in six variables commutative with both \(S \) and \(T \).
The following table shows 8 such collineations, their squares, and the collineations of \(\{S, T\} \) which multiply these 8 collineations on the right to form collineations of \(C_6 \) of period 2. The numbers in the last column show the total number of collineations of \(C_6 \) of period 2 corresponding to each \(B \) of \(K \). Thus it is seen that \(C_6 \) contains just 99 collineations of period 2.

It is easily shown that \(G \) contains more than 99 collineations of period 2 and hence \(G \) and \(C_6 \) are not simply isomorphic.

<table>
<thead>
<tr>
<th>(W^2)</th>
<th>(W^2 = S^2)</th>
<th>(T^3, S^3 T^3)</th>
<th>(X^2 = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S^2)</td>
<td>(S^2 = 1)</td>
<td>(1, T^3, S^3 T^3)</td>
<td>(3)</td>
</tr>
<tr>
<td>(U^2 = V^{-1} W^2 V)</td>
<td>(U^2 = T^3)</td>
<td>(S^3, S^3 T^3)</td>
<td>(2)</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
W^2 &\equiv -1 & S^2 &\equiv 0 & T^3, S^3 T^3 &\equiv 2 \\
S^2 &\equiv 0 & S^2 &\equiv 0 & 1, T^3, S^3 T^3 &\equiv 3 \\
U^2 &\equiv 0 & U^2 &\equiv 0 & S^3, S^3 T^3 &\equiv 2 \\
V^2 &\equiv 0 & X^2 &\equiv 1 & S^3 T^3 \text{ where } (j, k) \text{ satisfies the congruence } 3(j+k) \equiv 0 \pmod{6} &\equiv 18 \\
R X &\equiv 0 & (RX)^2 &\equiv 1 & S^3 T^3 \text{ where } (j, k) \text{ satisfies the congruence } 3(j+k) \equiv 0 \pmod{6} &\equiv 36 \\
R W^3 &\equiv W^3 & (RW^3)^2 &\equiv W^3 & S^3 T^3 \text{ where } (j, k) \text{ satisfies the congruence } 3(j+k) \equiv 0 \pmod{6} &\equiv 2 \\
R U^3 &\equiv U^3 & (RU^3)^2 &\equiv T^3 & S^3 T^3 \text{ where } (j, k) \text{ satisfies the congruence } 3(j+k) \equiv 0 \pmod{6} &\equiv 18 \\
\end{align*}
\]

University of Alabama