ON THE nTH DERIVATIVE OF $f(x)^*$

H. S. WALL

Let y_1, y_2, y_3, \ldots be defined recursively as follows: y_1 is the logarithmic derivative of a function $y = f(x)$, and $y_v = D_x y_{v-1}$, ($v = 2$, 3, 4, \ldots). Then the successive derivatives y', y'', y''', \ldots of y with respect to x are polynomials in y and the y_v. In fact, $y' = y y_1$, $y'' = y (y_2 + y_1^2)$, $y''' = y (y_3 + 3 y_1 y_2 + y_1^3)$, and

\[
y^{(n)} = y \sum A_{n_1 n_2 \ldots n_n}^{(n)} y_1^{n_1} y_2^{n_2} \cdots y_n^{n_n},
\]

where $A_{n_1 n_2 \ldots n_n}^{(n)}$ is a positive integer and the summation is taken for all non-negative integral solutions $n_1, n_2, n_3, \ldots, n_n$ of the equation

\[
n_1 + 2n_2 + 3n_3 + \cdots + nn_n = n.
\]

This statement may readily be proved by mathematical induction. The principal object of the present note is to prove the following theorem:

Theorem. The integer $A_{n_1 n_2 \ldots n_n}^{(n)}$ in (1) is equal to the number of ways that n different objects can be placed in compartments, one in each of n_1 compartments, two in each of n_2 compartments, three in each of n_3 compartments, \ldots, without regard to the order of arrangement of the compartments.

1. Generalized binomial coefficients. Let k, m, n, $(kn \leq m)$, be positive integers, and denote by $C_{m,n}^{(k)}$ the number of ways that kn objects can be selected from m objects and placed in n compartments, k in each compartment, where no account is taken of the order of arrangement of the compartments. Thus $C_{m,n}^{(k)}$ is the binomial coefficient $C_{m,n}^{(k)} = \binom{m}{kn} \cdot \binom{kn}{k} \cdot \cdots \cdot \binom{k}{k}$.

We have

\[
n! \cdot C_{m,n}^{(k)} = C_{m, kn} \cdot (C_{kn,k} \cdot C_{k(n-1),k} \cdot \cdots \cdot C_{k,k}),
\]

or

\[
C_{m,n}^{(k)} = m! \left(\frac{1}{[n!(m - kn)!(k!)^n]} \right).
\]

This has meaning if $m \geq kn$. For special 0 values of the indices we shall consider $C_{m,n}^{(k)}$ to be defined by (3) by taking $0! = 1$. Thus if $k \geq 0$, $m \geq 0$, we have $C_{m,0}^{(k)} = 1$.

* Presented to the Society, September 5, 1936.
If (2) holds, it will be seen that

\[C_{k_1,\nu_1}^{(1)} \cdot C_{k_2,\nu_2}^{(2)} \cdots C_{k_n,\nu_n}^{(n)} = \frac{n!}{\nu_1! \nu_2! \cdots \nu_n! (1!)^{\nu_1} (2!)^{\nu_2} \cdots (n!)^{\nu_n}}, \]

where \(k_1 = n, \ k_2 = n - \nu_1, \ k_3 = n - \nu_1 - 2\nu_2, \ \cdots \). We are to prove that this is the value of \(A_{\nu_2,\ldots,\nu_n}^{(n)} \) in (1). For the proof we need the following identities which will be seen to hold for all values of \(m, n, k \) for which the symbols involved have been defined:

\[C_{m,n}^{(k+1)} = C_{m-1,n}^{(k)} + C_{m-1,1}^{(k)} \cdot C_{m-k-1,n-1,1}^{(k+1)}, \]

\[(n + 1) \cdot C_{m,n+1}^{(k)} = C_{m,n}^{(k)} \cdot C_{m-k,n+1}^{(k)} \cdot C_{m-k,n+1}^{(k+1)}. \]

Let it be remarked in passing that if \(P_{n,k} = C_{n,0}^{(k)} + C_{n,1}^{(k)} x + C_{n,2}^{(k)} x^2 + \cdots \), then from (5) it follows that \(P_{n,k} = P_{n-1,k} + C_{n-1,k-1} x P_{n-k,k} \).

Also \(P_{n,k} = C_{n,k} P_{n-k,k} \).

2. Derivation of the formula for \(A_{\nu_2,\ldots,\nu_n}^{(n)} \). Denote the sum in (1) by \(S_n \), and write \(S_n \) as a polynomial in \(y_1 \), \(S_n = \sum_{\nu=0}^n S_n^{(1)} y_1^\nu \), where \(S_n^{(1)} \) is independent of \(y_1 \). We begin by showing that

\[S_n^{(1)} = S_n^{(1)} + C_{i,n-j}^{(1)} S_n^{(1)}, \quad 0 \leq j \leq i. \]

We use induction on the subscript difference \(i-j = k \). From the relation \(yS_n = D_x [y S_{n-1}] \) it follows that

\[S_{n,v} = S_{n-1,v-1}^{(1)} + (1 + v) y_2 S_{n-1,v+1}^{(1)} + D_x S_{n-1,v}^{(1)}, \]

\[\nu = 0, 1, 2, \ldots, n, \]

with the agreement that \(S_{i,j} = 0 \) if \(j < 0 \) or \(j > i \). Assuming that (7) holds for \(k < q \) we shall prove that it holds for \(k = q \). Accordingly, we choose \(n, \nu, (0 \leq \nu < n) \), in (8) so that \(n - \nu = q \). Then, by our assumption, (8) may be written in the form

\[S_{n,v}^{(1)} = \begin{cases} S_{n-1,v-1}^{(1)} + (1 + v) y_2 C_{n-1,v+1}^{(1)} S_{n,v-2,0}^{(1)} + C_{n-1,v} D_x S_{n-1,v-1,0}^{(1)}, & \text{if } q > 1; \\
S_{n-1,v-1}^{(1)} + C_{n-1,v} D_x S_{n-1,v-1,0}^{(1)}, & \text{if } q = 1. \end{cases} \]

Replace \(n \) by \(n-\nu \), and \(v \) by 0 in (8), and eliminate \(D_x S_{n-\nu-1,0}^{(1)} \) in (9). The result, by (6), is

\[S_{n,v}^{(1)} = S_{n-1,v-1}^{(1)} + C_{n-1,v} S_{n-\nu,0}^{(1)}. \]
Hence
\[S^{(1)}_{n,v} = \sum_{i=0}^{v} \left[S^{(1)}_{n-i,v-i} - S^{(1)}_{n-i-1,v-i-1} \right] = \left[\sum_{i=0}^{v} C^{(1)}_{n-i-1,v-i} \right] S^{(1)}_{n,v,0}; \]
or, by (5) with \(k = 0 \), \(S^{(1)}_{n,v} = C^{(1)}_{n,v} S_{n,v,0} \), as was to be proved.

We next put
\[S^{(p-1)}_{m,0} = \sum_{\nu=0}^{[m/p]} S^{(p)}_{m,v} y^{p}_{\nu}, \quad p = 2, 3, 4, \cdots. \]

Then the formulas
(11) \[S^{(p)}_{m,v} = C^{(p)}_{m,v} S^{(p)}_{m-pr,0}, \]
(12) \[S^{(p)}_{m,v} = C^{(p-1)}_{m-1,1} S^{(p)}_{m-p,v-1} + (1 + \nu) y^{p+1}_{\nu+1} S^{(p)}_{m-1,v+1} + D_{\nu} S^{(p)}_{m,v}, \]
hold for \(p = 1 \). Assuming that they hold for \(p < k \), \(k > 1 \), we may then prove them for \(p = k \). To do this, put \(\nu = 0 \) and \(p = k - 1 \) in (12), and equate coefficients of like powers of \(y_k \). The result is the equation (12) with \(p = k \). Thus (12) is true when \(p = k \), and in particular \(S^{(k)}_{kr,v} = C^{(k-1)}_{kr-1,1} S^{(k)}_{kr-1,v-1} \). Hence by (5) we find that \(S^{(k)}_{kr,v} = C^{(k-1)}_{kr,v} S^{(k)}_{kr-1,v} \), so that (11) holds for \(p = k \) provided \(m - kv = 0 \). The proof of (11) for \(p = k \) may now be carried out along the lines of the proof of (7), with induction, in this case, on the difference \(m - kv \).

After (11) has been proved it follows at once by (4) that
\[A^{(n)}_{\nu_1 \nu_2 \cdots \nu_n} = \frac{n!}{\nu_1! \nu_2! \cdots \nu_n! (1)! \cdots (n-1)! \cdots (n)!} \cdot \]

3. Application. In conclusion I shall give examples to illustrate the application of the foregoing result.

Example 1. Let \(a_{n,k} \) denote the number of ways that \(n \) different objects can be distributed among \(k \) compartments, where no account is taken of the order of arrangement of the compartments, and at least one object is placed in each compartment. Then elementary considerations will show that \(a_{n,k} = k a_{n-1,k} + a_{n-1,k-1} \). Put
\[y = e^{t \nu_1} = e^{\nu_1 \sum_{\nu=0}^{\infty} L_{\nu}(t) x^{\nu}/\nu!}. \]

Then by (1) we find that \(L_{\nu}(t) = a_{\nu,1} t + a_{\nu,2} t^2 + \cdots + a_{\nu,n} t^n \).

Put \(g_k(y) = \sum_{\nu=0}^{\infty} a_{k+\nu,y} y^\nu \). It follows that \(g_1(y) = 1/(1-y) \), \(g_k(y) = g_{k-1}(y)/(1-ky) \), \((k = 2, 3, 4, \cdots) \), or \(g_k(y) = 1/[1-y(1-2y) \cdots (1-ky)] \). Hence \(L_n(1) \), the number of ways that \(n \) different ob-
jects can be distributed among \(n \) or fewer compartments, is the coefficient of \(y^n \) in the power series \(P(y) \) for the function

\[
\frac{y}{1 - y} + \frac{y^2}{(1 - y)(1 - 2y)} + \cdots + \frac{y^m}{(1 - y)(1 - 2y) \cdots (1 - my)},
\]

where \(m \geq n \). The number \(L_n(1) \) is also the coefficient of \(x^n/n! \) in the power series for the function \(e^{(e^x-1)} \).

The \(a_{n,k} \) are given explicitly by the formula

\[
a_{n,k} = \frac{(-1)^{k+1}}{k!} \sum_{r=0}^{k} C_{k,r} (-1)^{r+1} r^n.
\]

Example 2. Put \(y = (1 + x)^{-t} \) in (1) and then set \(x = 0 \). There results this identity:

\[
t(t + 1)(t + 2) \cdots (t + n - 1)
\]

\[
= \sum \frac{t^{v_1+v_2+\cdots+v_n}}{(1 \cdot 2 \cdot \cdots \cdot v_1)(2 \cdot 4 \cdot \cdots \cdot 2v_2) \cdots (n \cdot 2n \cdot \cdots \cdot n v_n)},
\]

where the summation is taken as in (1). On putting \(t = 1 \) in (14) we obtain the following theorem.*

Theorem. Form a partition of \(n \) by taking at most one integer from each of the progressions 1, 2, 3, \cdots ; 2, 4, 6, \cdots ; 3, 6, 9, \cdots ; \cdots . Multiply together the terms of each progression up to and including the integer chosen. Let the products so formed be \(a, b, c, \cdots \). Then

\[
\sum [1/(a \cdot b \cdot c \cdots)] = 1,
\]

where the sum is taken for all such partitions of \(n \).

Example 3. If we differentiate the members of (14) with respect to \(t \) and then set \(t = 1 \), we get the formula

\[
1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}
\]

\[
= \sum \frac{(v_1 + v_2 + \cdots + v_n)}{(1 \cdot 2 \cdot \cdots \cdot v_1)(2 \cdot 4 \cdot \cdots \cdot 2v_2) \cdots (n \cdot 2n \cdot \cdots \cdot n v_n)}.
\]

This may likewise be interpreted as a theorem on partitions of \(n \).

*Northwestern University