GROUPS OF MOTIONS IN CONFORMALLY FLAT SPACES. II

JACK LEVINE

1. Introduction. In a previous paper with a similar title,* we have shown that all groups of motions admitted by a conformally flat metric space \(V_n \) must be subgroups of the general conformal group \(G_N \) of \(N = \frac{1}{2}(n+1)(n+2) \) parameters generated by

\[
(1) \quad \xi^i = b^i + a^i_0 x^i + x^i a^i_j x^j - \frac{1}{2} a^i_j \epsilon_i j(x^j)^2 + b^i x^i, \quad \epsilon_i = \pm 1.
\]

In (1), the \(b^i \) satisfy the relations \(e_i b^i + e_j b^j = 0, (i, j \text{ not summed}). Otherwise the \(a^i_0 \) and \(b^i \) in (1) are arbitrary.

To define a group of motions of \(V_n \), the \(\xi^i \) must satisfy the equations

\[
(2) \quad \xi^k \frac{\partial h}{\partial x^k} + h \frac{\partial \xi^i}{\partial x^i} = 0, \quad \text{\(i \) not summed},
\]

and the coordinates \(x^i \) of (2) are such that \(g_{ij} = \delta_{ij} h^2 \). Hence in this coordinate system, the metric has the form

\[
(3) \quad ds^2 = h^2 \sum e_i (dx^i)^2.
\]

In this paper we shall consider the simplest subgroups of \(G_N \), and determine the nature of the function \(h \) corresponding to each. Also we give a restatement of Theorem 2 of I, since it is not complete as given.

2. The group \(G_N \). The basis of the group \(G_N \) may be taken in the form

\[
(4) \quad P_i = \dot{p}_i,
\]

\[
(5) \quad S_{ij} = e_i x^i \dot{p}_j - e_j x^j \dot{p}_i, \quad i, j \text{ not summed},
\]

\[
(6) \quad U = x^i \dot{p}_i,
\]

\[
(7) \quad V_i = 2 x^i x^j \dot{p}_j - e_i e_j (x^j)^2 \dot{p}_i,
\]

where \(\dot{p}_i = \partial / \partial x^i \); and its commutators are ‡

*Groups of motions in conformally flat spaces, this Bulletin, vol. 42 (1936), pp. 418–422. The results of this paper (which we refer to as I) will be assumed known.
† All small Latin indices take the values 1, 2, \(\cdots \), \(n \), with \(n > 2 \), unless otherwise noted.
\((8a) \quad (P_i, P_j) = 0, \)
\((8b) \quad (P_i, U) = P_i, \)
\((8c) \quad (P_i, S_{ik}) = e_\delta_{ij}P_k - e_\delta_{ik}P_i, \)
\((8d) \quad (P_i, V_i) = 2\delta_{ij}U - 2e_\delta S_{ij}, \)
\((8e) \quad (S_{ij}, S_{kl}) = e_\delta_{ik}S_{ij} - e_\delta_{ik}S_{ik} - e_\delta_{ik}S_{kl} + e_\delta_{ik}S_{jk}, \)
\((8f) \quad (S_{ij}, U) = 0, \)
\((8g) \quad (S_{ij}, V_k) = e_\delta_{ik}V_i - e_\delta_{ik}V_i, \)
\((8h) \quad (U, V_i) = V_i, \)
\((8i) \quad (V_i, V_j) = 0. \)

The four types of symbols, \(P_i, S_{ij}, U, V_i, \) will be considered singly and in various combinations to form the subgroups to be discussed.

3. **Subgroups of one type of symbol.** We consider first the subgroups with symbols

(a) \([P_a]\),
(b) \([U]\),
(c) \([S_{\alpha\delta}]\),
(d) \([V_\alpha]\).

The notation \([P_a]\) means \([P_1, P_2, \cdots, P_r]\), and similarly for other expressions of this nature. That each of (a)–(d) forms a subgroup follows from (8a), (8e), (8i).

For (a), we have from (4), \(\xi^k = \delta^k_\alpha \), and (2), written in the form

\[\frac{\partial h}{\partial x^k} + h \frac{\partial \xi^i}{\partial x^i} = 0, \]

becomes

\[\frac{\partial h}{\partial x^\alpha} = 0. \]

Hence (a): \(h = h(x^{r+1}, \cdots, x^n) \). In case \(r = n \), \(h \) is constant, and the \(V_n \) is flat.

The finite equations of the group \([P_a]\) are

\[x'^i = x^i + a^\alpha \delta^i_\alpha \]

with parameters \(a^\alpha \). Because of the form of (10), we call this group the \(T_r \) of translations. However, the group of motions \([P_a]\) is not a group of translations of the \(V_n \) unless \(h = \) constant, \(\dagger \) that is, unless \(V_n \) is flat.

* Greek letters take the values 1, 2, \cdots, \(r \), with \(r \leq n \).

† L. P. Eisenhart, *Continuous Groups of Transformations*, p. 212. We refer to this book as CG.
For (b), we have $\xi^i = x^i$, and (2) becomes

\begin{equation}
\frac{\partial h}{\partial x^i} = -h.
\end{equation}

Hence h is homogeneous of degree -1, that is,

\begin{equation}
h = \frac{1}{x_1} \phi\left(\frac{x^2}{x_1}, \cdots, \frac{x^n}{x_1}\right),
\end{equation}

say, where ϕ is an arbitrary function of its arguments.

The finite equations of the group $[U]$ are $x'^i = ax^i$, the group of dilations.

For (c), we find

\begin{equation}
\xi^i_{\alpha \beta} = e_\alpha \delta^i_\beta x^\alpha - e_\beta \delta^i_\alpha x^\beta,
\end{equation}

as the vector components of the group $[S_{\alpha \beta}]$ of $\frac{1}{2}r(r-1)$ parameters. The equations (2) which must be satisfied for each $\xi^i_{\alpha \beta}$ now become

\begin{equation}
X_{\alpha \beta} h = e_\alpha x^\alpha \frac{\partial h}{\partial x^\beta} - e_\beta x^\beta \frac{\partial h}{\partial x^\alpha} = 0, \quad \alpha, \beta \text{ not summed},
\end{equation}

These equations have as general solution,

\begin{equation}
h = h(u; x^{r+1}, \cdots, x^n),
\end{equation}

where $u = \sum e_\alpha (x^\alpha)^2$.

In obtaining this, we use the fact that the system (12) contains $r - 1$ independent equations, since

\begin{equation}
e_\alpha x^\alpha X_{\beta \gamma} + e_\beta x^\beta X_{\gamma \alpha} + e_\gamma x^\gamma X_{\alpha \beta} = 0,
\end{equation}

and it is also a complete system.*

The group $[S_{\alpha \beta}]$ has the finite equations

\begin{equation}
x'^\alpha = a_\alpha^\beta x^\beta, \quad x'^A = x^A, \quad A = r + 1, \cdots, n,
\end{equation}

with

\begin{equation}
\sum e_\alpha a_\alpha^\beta a^\gamma_\beta = e_\rho \delta^\gamma_\rho.
\end{equation}

We call this group of $\frac{1}{2}r(r-1)$ parameters, the $R_{r(r-1)/2}$ of rotations.†

The vector components for the group (d) are

\begin{equation}
\xi^i_{\alpha} = 2x^i x^\alpha - e_\alpha \delta^i_\alpha R,
\end{equation}

† CG, p. 57, problem 12.
where $R = \sum e_i(x^i)^2$. Equations (2) reduce, for this case, to

\begin{equation}
2x^a x^i \frac{\partial h}{\partial x^i} - e_a R \frac{\partial h}{\partial x^a} + 2hx^a = 0.
\end{equation}

If we put $\dot{\lambda} = x^i \partial h / \partial x^i$, (13) may be written in the form

\[
\frac{2(\lambda + \ddot{h})}{R} = \frac{e_\alpha}{x^\alpha} \frac{\partial h}{\partial x^\alpha}, \quad \alpha \text{ not summed}.
\]

Since the left member of this equation is independent of α, we may write

\[
\frac{e_\alpha}{x^\alpha} \frac{\partial h}{\partial x^\alpha} = \frac{e_\beta}{x^\beta} \frac{\partial h}{\partial x^\beta},
\]

which simplifies to (12), and hence h is of the form for (c). Using this form for h in (13), we obtain on reduction,

\begin{equation}
(u - v) \frac{\partial h}{\partial u} + \sum x^A \frac{\partial h}{\partial x^A} = -h, \quad A = r + 1, \ldots, n,
\end{equation}

with

\[
v = \sum e_A (x^A)^2.
\]

The equation (14) has as solution

\[
h = \frac{1}{R} \phi \left(\frac{x^{r+1}}{R}, \ldots, \frac{x^n}{R} \right).
\]

In case $r = n$, $h = a/R$, with a constant, and the V_n is flat.*

The finite equations for the group $[V_a]$ are†

\[
x^i = \frac{x^i - \frac{1}{2} R \delta_\alpha e_\alpha a_\alpha}{1 - a_\alpha x^\alpha + \frac{1}{4} e_\alpha e_\beta a_\alpha^2 (x^\beta)^2}.
\]

4. Subgroups with two types of symbols. We consider in this section the simplest subgroups with two types of symbols. These are:

(e) $[P_\alpha, S_{\beta\gamma}]$,
(f) $[P_\alpha, U]$,
(g) $[S_{\alpha\beta}, U]$,
(h) $[V_a, U]$,
(i) $[S_{\alpha\beta}, V_{\gamma}]$.

Each of these we discuss briefly.

(e). The function h has the same form as for (a) since equations (12) are satisfied identically if (9) are.

* L. P. Eisenhart, Riemannian Geometry, p. 85.
† Lie, loc. cit., p. 350.
(f). Using the form of \(h \) for (a) in (11), we see that \(h \) is homogeneous of degree \(-1\) in \(x^{r+1}, \ldots, x^n \), that is, we may write

\[
h = \frac{1}{x^{r+1}} \phi \left(\frac{x^{r+1}}{x^{r+1}}, \ldots, \frac{x^n}{x^{r+1}} \right).
\]

If \(r = n \), there is no solution.

(g). If we substitute for \(h \) in (11) its value as determined from (c), we obtain

\[
2u \frac{\partial h}{\partial u} + x^A \frac{\partial h}{\partial x^A} = -h, \quad A = r + 1, \ldots, n.
\]

Hence,

\[
h = \frac{1}{u^{1/2}} \phi \left(\frac{x^{r+1}}{u^{1/2}}, \ldots, \frac{x^n}{u^{1/2}} \right).
\]

(h). Equations (11) and (13) show \(\partial h/\partial x^a = 0 \), so that \(h \) is the same as in (f). If \(r = n \), there is no solution.

(i). For (d), we have seen that (13) imply (11), that is, the form of \(h \) for (i) is the same as that for (d).

5. **Subgroups with three and four types of symbols.** Of the four possibilities \([P_a, S_{\beta\gamma}, V_\delta], [P_a, S_{\beta\gamma}, U], [P_a, V_\beta, U], [S_{a\beta}, V_\gamma, U]\), only the second and fourth give subgroups:

(j) \([P_a, S_{\beta\gamma}, U]\),

(k) \([S_{a\beta}, V_\gamma, U]\).

For (j), the \(P_a, S_{\beta\gamma} \) imply \(h = h(x^{r+1}, \ldots, x^n) \), and then \(U \) shows \(h \) is the same form as in (f). There is no solution of \(r = n \).

The form of \(h \) for (k) will be the same for (h), as follows from (i), that is, \(h \) will have the same form as for (f). If \(r = n \), there is no solution.

The simplest four type symbol subgroup is

(l) \([P_a, V_\beta, S_{\gamma\delta}, U]\).

It is easily seen that the solution for \(h \) is the same as for (f), and there is no solution for \(r = n \).

6. **Indices in different ranges.** So far, we have considered only subgroups whose symbol indices all have the same range, \(1, \ldots, r \). In this section we discuss cases (e), (i), (j), (k), and (l) with the indices for the various types of symbols in different ranges.

Case (m): \([P_i, S_{\beta\delta}]\). Let \(i \) range through \(1, \ldots, r \), and \(j, k \) through any set of \(t \) indices, \(s_1, s_2, \ldots, s_t \), with \(s_1 < s_2 < \cdots < s_t \). Then either:
MOTIONS IN FLAT SPACES

\[s_t \leq r, \quad (m_2) \quad s_1 \leq r, \quad s_t > r, \quad (m_3) \quad s_1 > r. \]

For case \((m_1)\), equations (9) imply (12) with \(\alpha, \beta\) in the range \(s_1, s_2, \ldots, s_t\). Hence \(h\) has the same form as in (a).

In the second case, \((m_2)\), there must be a common index in \((1, \ldots, r)\) and \((s_1, \ldots, s_t)\), say \(\beta\). Then, in (8c), choose \(i=j=\beta\), and \(k=s_t\). This gives

\[(P_\beta, S_{\beta}s_t') = e_\beta P_{s_t'}, \quad s' = s_t, \]

which is not in the set \(\{P_a\}\). Hence, this case is impossible.

For case \((m_3)\), the two sets of indices have no index in common, and we must have \(t \geq 2\). Without loss of generality, we may take the set \(s_1, \ldots, s_t\) to be \(r+1, r+2, \ldots, r+t\). The form of \(h\) is easily seen to be

\[h = h(v_t; x^{r+t+1}, \ldots, x^n), \quad v_t = \sum_{r+1}^{r+t} e_f(x^f)^2. \]

Case (n): \([S_{jk}, V_t]\). As in case (m), there are three possibilities, only the first and third being possible. If we let \(i\) take the range \(1, \ldots, r\), then if \(s_t \leq r, h\) has the same form as for (d). If \(s_t > r\), we may let \(j, k\) have the range \(r+1, \ldots, r+t\). Then \(h\) must satisfy (13), and (12) with the indices in this latter range. Since (13) implies (12), we must have \(h = h(u; v_t; x^{r+t+1}, \ldots, x^n)\). Using this form for \(h\) in (13), we obtain

\[(u - w) \frac{\partial h}{\partial u} + v_t \frac{\partial h}{\partial v_t} + x^B \frac{\partial h}{\partial x^B} = -h, \quad B = r + t + 1, \ldots, n, \]

with \(w = \sum e_B(x^B)^2\). This equation has as solution

\[h = \frac{1}{R - v_t} \phi \left(\frac{v_t}{R - v_t}; \frac{x^{r+t+1}}{R - v_t}, \ldots, \frac{x^n}{R - v_t} \right). \]

With three types of symbols, we consider first \([P_i, S_{jk}, U]\), and let \(i=1, \ldots, r\). If the indices of \(S_{jk}\) are all contained in the range \(1, \ldots, r\), \(h\) has the same form as for \([P_a, U]\). Otherwise, we must have all \(j, k\) indices outside the range \(1, \ldots, r\). Then we have: (o) \([P_a, S_{jk}, U]\), and \(h = h(v_t; x^B)\), using the notation of case (n). With this value of \(h\) in (11) we obtain equation (15) with \(u\) replaced by \(v_t\). Hence,

\[h = \frac{1}{v_t^{1/2}} \phi \left(\frac{x^{r+t+1}}{v_t^{1/2}}, \ldots, \frac{x^n}{v_t^{1/2}} \right). \]

As the next case we consider \([V_a, S_{jk}, U]\). If the \(j, k\) indices are included in \(1, \ldots, r\), we get the same form for \(h\) as in \([V_a, U]\). If not
we must have \(j, k \) in the range \(J, K \), to give: (p) \([V_a, S_{JK}, U]\). The symbols \(V_a, U \) imply \(h = h(x^{r+1}, \ldots, x^n) \), and then the symbols \(S_{JK} \) imply \(h = h(v_t; x^B) \), the same as in (o).

The other two possibilities \([P_t, S_{jk}, V_t]\), \([P_t, V_j, U]\) are easily shown to be impossible, no matter in what ranges we choose the indices of the various symbols.

For four types we have \([P_a, S_{jk}, V_t, U]\). If \(j, k \) are in the \(J, K \) range, we have a contradiction from \((P_a, V_t)\), no matter what range \(l \) has. The only other choice is \(j, k \) included in the \(1, \ldots, r \) range. Then, from \((P_a, V_t)\), we must have \(l \) in this range also. This gives

\[
(q) \quad [V_t, S_{a'b'}, V_{\gamma'}, U], \quad \alpha', \beta', \gamma' \text{ range included in } 1, \ldots, r,
\]
and \(h \) has the same form as for (f), as easily follows.

7. Summary. We give here a summary of the various forms for \(h \) corresponding to the subgroups considered.

(a) \([P_a]\), \(\quad h = h(x^{r+1}, \ldots, x^n); \)

(b) \([U]\), \(\quad h = \frac{1}{x^1} \phi \left(\frac{x^2}{x^1}, \ldots, \frac{x^n}{x^1} \right); \)

(c) \([S_{a\beta}]\), \(\quad h = h(\mu; x^{r+1}, \ldots, x^n); \)

(d) \([V_a]\), \(\quad h = \frac{1}{R} \phi \left(\frac{x^{r+1}}{R}, \ldots, \frac{x^n}{R} \right); \)

(f) \([P_a, U]\), \(\quad h = \frac{1}{x^{r+1}} \phi \left(\frac{x^{r+2}}{x^{r+1}}, \ldots, \frac{x^n}{x^{r+1}} \right), r = n, \text{ no solution}; \)

(g) \([S_{a\beta}, U]\), \(\quad h = \frac{1}{u^{1/2}} \phi \left(\frac{x^{r+1}}{u^{1/2}}, \ldots, \frac{x^n}{u^{1/2}} \right); \)

(m8) \([P_a, S_{ij}]\), \(\quad h = h(\mu; x^B); \)

(n8) \([V_a, S_{ij}]\), \(\quad h = \frac{1}{R - v_t} \phi \left(\frac{v_t}{R - v_t}; \frac{x^B}{R - v_t} \right); \)

(o8) \([P_a, S_{ij}, U]\), \(\quad h = \frac{1}{v_t^{1/2}} \phi \left(\frac{x^B}{v_t^{1/2}} \right); \)

(e) \([P_a, S_{\beta\gamma}]\), and (m3) \([P_a, S_{\beta'\gamma'}]\), \(h \) as in (a);

(i) \([S_{a\beta}, V_{\gamma}]\), \(\quad h = \frac{1}{v_t^{1/2}} \phi \left(\frac{x^B}{v_t^{1/2}} \right); \)

(h) \([V_a, U]\), \(\quad \alpha \) \([P_a, S_{\beta'\gamma'}, U]\), \(\quad (k) \quad [S_{a\beta}, V_{\gamma'}, U], \)

(l) \([P_a, V_{\beta}, S_{\gamma'}] U\), \(\quad \alpha \) \([P_a, S_{\beta'\gamma'}] U\), \(\quad (o1) \quad [P_a, S_{\beta'\gamma'}, U], \)

(p1) \([V_a, S_{\beta'\gamma'}, U]\), \(\quad \alpha \) \([V_a, S_{\beta'\gamma'}, V_{\gamma'}, U]\),
all have \(h \) as in (f);

\[(p3) \quad [V_\alpha, S_{IJ}, U], \quad h \text{ as in } (o_3).\]

In the above summary we have used the following notation:

\[
R = \sum e_i (x^i)^2, \quad u = \sum e_\alpha (x^\alpha)^2, \quad v_t = \sum e_t (x^t)^2,
\]

\(i = 1, \ldots, n; \) Greek letters have the range 1, \ldots, \(r; \) \(i, J = r+1, \ldots, r+t; \) \(A = r+1, \ldots, n; \) primed Greek letters have a range contained within 1, \ldots, \(r; \) \(B = r+t+1, \ldots, n. \)

8. Restatement of Theorem 2 of I. In the proof of this theorem, the possibility \(a_0 = b^i = a_t = 0 \) was omitted. In this case, \(\xi^i \) has the form \(\xi^i = b^i x^i, \) and the function \(f(R) \) is arbitrary. The group for this case is evidently the rotation group \([S_{ij}]\) of \(\frac{1}{2} n(n-1) \) parameters. It is not difficult to show that the subgroups corresponding to the two cases mentioned in the theorem are \([ce_i P_i + V_i, S_{jk}]\) for \(f(R) = (\alpha R + \beta)^2 \) and \([S_{ij}, U]\) for \(f(R) = \alpha R. \) We may thus state the corrected theorem in the form:

Theorem. Every metric space with quadratic form \(\sum e_i (dx^i)^2/f(R) \) admits the rotation group \([S_{ij}]\) as a group of motions. The only metric spaces with this quadratic form which admit other groups of motions are spaces of constant curvature, and \(f \) has the form \(f(R) = (\alpha R + \beta)^2, \) and the group is \([ce_i P_i + V_i, S_{jk}]\), and spaces with \(f(R) = \alpha R, \) in which case the group is \([S_{ij}, U]\).

North Carolina State College