so that $\sum_{m=1}^{\infty} |A_m(f, 0)| = \infty$. It remains to show that $f(x) \in L$ which is easily seen since

$$\int_{-\pi}^{\pi} f(x) \, dx = \sum_{i=0}^{\infty} 2^{-i} \int_{-\pi}^{\pi} f_n(x) \, dx \leq \sum_{i=0}^{\infty} 2^{-i(2(n+1)} \frac{\pi}{3(n+1)} < \infty.$$

We notice that, since this function vanishes in the neighborhood of the origin, it coincides with a function having an absolutely summable Fourier series in the neighborhood of the origin, and therefore absolute summability $C(1)$ is not a local property.

University of Oklahoma

COMPLETE REDUCIBILITY OF FORMS

RUFUS OLDENBURGER

1. **Introduction.** We shall say that F is a form in r essential variables with respect to a field K if F cannot be brought by means of a non-singular linear transformation in the field K to a form with less variables. Let F be a form of degree p written as $a_{i_1}\ldots x_{j_1} \ldots x_k$, $(i, j, \ldots, k=1, 2, \ldots, n)$. We arrange the coefficients of F in a matrix A whose n^{p-1} columns are of the form

$$\begin{vmatrix}
a_{1j} & \cdots & \cdots & a_{1k} \\
a_{2j} & \cdots & \cdots & a_{2k} \\
\vdots & \ddots & \ddots & \vdots \\
a_{nj} & \cdots & \cdots & a_{nk}
\end{vmatrix}.$$

The index i is associated with the rows of A and the $p-1$ indices j, \ldots, k are associated with the columns of A. We assume that the coefficients in F are so chosen that A is symmetric in the sense that the value of an element $a_{ij}\ldots k$ is unchanged under permutation of the subscripts. It can be shown that F is a form in r essential variables if and only if the rank of A is r.

A form F is said to be completely reducible in a field K if F splits

1. Presented to the Society, April 7, 1939.
in K into a product of linear factors. Hočevar proved\(^3\) that a form F with no repeated factors is completely reducible in the complex field if and only if F divides each third order minor of its Hessian. It is obvious that this result of Hočevar is not valid for each field of numbers. A form F of degree p is said to be nonsingular with respect to K if F can be written as a linear combination of pth powers of linearly independent linear forms with coefficients in K. Elsewhere the author proved\(^4\) that the Hessian of a cubic form nonsingular with respect to K factors in K into linearly independent factors. For a field K with characteristic different from 2, 3, and element $a \neq 0$, the product $ax_1x_2 \cdots x_n$ in n independent variables x_1, x_2, \cdots, x_n is the Hessian of the nonsingular cubic $C(a)$ where $6C(a) = ax_1^3 + x_2^3 + \cdots + x_n^3$.

We let $L_i = b_{ij}y_j$, $(i, j = 1, 2, \cdots, n)$, denote an arbitrary set of n linear forms linearly independent with respect to K. We write Δ for the determinant of the matrix (b_{ij}). Applying the nonsingular linear transformation $x_1 = L_1, x_2 = L_2, \cdots, x_n = L_n$ to $C(1/\Delta^2)$ we obtain a form whose Hessian is $L_1L_2 \cdots L_n$. Hence each product of linearly independent linear forms is the Hessian of a nonsingular cubic form. We have proved the theorem which follows.

Theorem 1. Let K be a field with characteristic not 2 or 3. A form F of degree n in n essential variables is completely reducible in K if and only if F can be written as the Hessian of a cubic form nonsingular with respect to K.

If F of Theorem 1 is completely reducible and F is the Hessian of a nonsingular cubic form C, then $C = a_1L_1^3, (i = 1, 2, \cdots, n)$, and the linear forms L_1, \cdots, L_n are the factors of F.

The utility of Theorem 1 is limited by the fact that the problem of representability of a form as the Hessian of a nonsingular cubic is unsolved. In the present paper we prove that a certain integer, called “minimal number,” associated with a completely reducible form F of degree n is not greater than 2^{n-1}. From this property we obtain a solution of the problem of complete reducibility of cubic forms for a field K with characteristic not 2 or 3.

2. **Minimal numbers and representations.** Elsewhere\(^5\) the author proved that each symmetric form F of degree p can be written for a

field K of order p or more as a linear combination of pth powers of linear forms. Such a linear combination with p terms we call a p-representation of F with respect to K. A representation of F with respect to K with a minimum number of terms is called a minimal representation of F with respect to K. The number of terms in such a representation we term the minimal number of F with respect to K, and denote this number by $m(F)$.

Theorem 2. Let K be a field with characteristic greater than n, and let F be a form of degree n completely reducible in K. Then $m(F) \leq 2^{n-1}$.

We write $p = 2^{n-1}$. Let L_1, L_2, \ldots, L_p denote the different possible forms of the type $(x_1 \pm x_2 \pm x_3 \pm \cdots \pm x_n)$. Let $k_i = +1$ if L_i contains an even number of minus coefficients, and $k_i = -1$ if L_i contains an odd number of such coefficients. We consider the sum

\[
\frac{1}{2^{n-1}} \left[\sum_{i=1}^{p} k_i L_i^n \right].
\]

Simple computation reveals that (1) is symmetric in the x's. We consider a product $\Pi = \pm x_1^a \cdots x_r^d$ of degree n with $r < n$ arising from the expansion of a term $k_i L_i^p$ in (1). Corresponding to the linear form L_i there is a unique form $L_j, (j \neq i)$, in (1) obtainable from L_i by changing the sign of x_n in L_i. Then $k_j = -k_i$. The product $P = x_1^a \cdots x_r^d$ arising from $k_i L_i^p$ has a coefficient the negative of that in Π. Thus the terms involving the product P, where these terms arise from $k_i L_i^p$ and $k_j L_j^p$, vanish. It follows that the coefficient of P in (1) is zero. It is obvious from the choice of the k_i that the coefficient of $x_1 \cdots x_n$ in (1) is $n!$, whence (1) is a p-representation of $n! x_1 \cdots x_n$. Since a completely reducible form F in n essential variables is equivalent to this product under nonsingular linear transformations in K, and the minimal number is an invariant of F, we have $m(F) \leq 2^{n-1}$. It follows that if $F = L_1 L_2 \cdots L_n$ where L_1, L_2, \ldots, L_n are linearly dependent linear forms, $m(F) \leq 2^{n-1}$.

3. **Complete reducibility of cubic forms.** In the present section we assume that the underlying field K is such that when two forms are equal to each other for all values of the variables in K, corresponding coefficients of these forms are equal. In the case of cubic forms this means that the characteristic of K is different from 2, 3. Evidently, a completely reducible cubic form is a form in not more than 3 essential variables. Since the minimal number of a binary cubic is not greater

* Restricting the characteristic of K to be greater than n is equivalent to assuming that the characteristic of K does not divide $n!$.

than 3, the theory of complete reducibility of binary forms may read-
ily be supplied by the reader. In what follows we therefore consider
cubic forms in 3 essential variables only.

Theorem 3. A cubic form F in 3 essential variables is completely re-
ducible with respect to a field K if and only if

(a) The minimal number of F with respect to K is 4.

(b) If $\mu_i R_i^3$ is a minimal representation of F with respect to K, then
roots $\sigma_i = (\mu_i/\mu_1)^{1/3}$ are in K for each i, and for some choice of the roots
σ_i we have $\sum_{i=1}^4 \sigma_i R_i = 0$.

A completely reducible cubic form F in 3 essential variables is
equivalent under nonsingular linear transformations in the given field
to $T = xyz$. By Theorem 2, $m(T) \leq 4$. If $m(T)$ were 3, the form T
would be equivalent to $C = au^3 + bv^3 + cw^3$ in the variables u, v, w,
whence T is nonsingular. For T to be nonsingular it is necessary and
sufficient that the Hessian H of T split into linearly independent
linear factors L, M, and N and under reduction of H to canonical
form uvw, T transform covariantly to a reduced form C. Since the
Hessian of T is already in canonical form and $T \neq ax^3 + by^3 + cz^3$,
we have $m(T) \neq 3$. The minimal number of a form cannot be less than
the number of essential variables in the form, whence $m(T) = 4$. Hence
$m(F) = 4$.

It is easy to prove that if $\sum_{i=1}^r \lambda_i (x + \alpha_i y)^n = 0$, where the λ's are not
zero, and $r \leq n + 1$, the α's can be grouped into sets S_1, S_2, \ldots, S_p
each of order 2 at least, where the α's in each set are equal; and if we
let λ_i correspond to α_i, the sum of the λ's corresponding to the α's
in S_i vanishes for each i in the range 1, 2, \cdots, p. From this it follows
rather immediately that if

$$6xyz = \sum_{i=1}^4 \lambda_i (x + \alpha_i y + \beta \delta)^3,$$

the right member of (2) is

$$\left(\frac{1}{4ab}\right) \left\{ (x + ay + bz)^3 - (x + ay - bz)^3
- (x - ay + bz)^3 + (x - ay - bz)^3 \right\}.$$

It is readily verified that the coefficients of x, y, z in a representa-
tion $\lambda_i L_i^3$, $(i = 1, 2, 3, 4)$, of $6xyz$ are different from zero, whence any
representation of $6xyz$ can be written as the right member of (2).
Thus each representation of $6xyz$ is of the type (3), and (3) is a repre-

[Oldenburger, Rational equivalence of a form to a sum of pth powers, Trans-
actions of this Society, vol. 44 (1938), pp. 219–249.]
sentation of $6xyz$ for each choice of a, b not zero. Since the representations of each form equivalent to $6xyz$ under nonsingular transformations can be obtained from $6xyz$ by substitutions $x = L$, $y = M$, $z = N$ where L, M, N are linearly independent linear forms, a cubic form F in 3 essential variables is completely reducible if and only if each 4-representation of F is of the type

$$k\left\{(L + aM + bN)^3 - (L + aM - bN)^3 - (L - aM + bN)^3 + (L - aM - bN)^3\right\},$$

where k, a, $b \neq 0$, and L, M, N are linearly independent.

Let a cubic form F in three essential variable be given by a minimal representation $\sum_{i=1}^{4} \mu_{i}R_{i}$. If F is completely reducible, the forms $\mu_{i}R_{i}$ (i not summed; $i = 1, 2, 3, 4$) are identically equal to the forms $\pm k[L \pm aM \pm bN]^3$ in some order and for some choice of k, a, b, L, M, and N. Then there exists an element c in the given field K such that $\rho_{i} = (c\mu_{i})^{1/3}$ are in K, and an ordering of the values of i so that

$$L + aM + bN \equiv \rho_{1}R_{1}, \quad L + aM - bN \equiv - \rho_{2}R_{2},$$
$$L - aM + bN \equiv - \rho_{3}R_{3}, \quad L - aM - bN \equiv \rho_{4}R_{4}.$$

Equations (5) are solvable for L, M, N if and only if $\sum_{i=1}^{4} \rho_{i}R_{i} \equiv 0$. Evidently there exists an element c in K so that roots ρ_{i} in K exist if and only if there exist roots $\sigma_{i} = (\mu_{i}/\mu_{c})^{1/3}$ in K. Theorem 3 is now proved.

Armour Institute of Technology