A FINITELY-CONTAINING CONNECTED SET

P. M. SWINGLE

In a previous paper an example has been given of a set which, for every integer \(n \geq 2 \), is the sum of \(n \) mutually exclusive connected subsets, but which is not the sum of \(\text{infinitely many such subsets} \). Here it is proposed to give an example of a connected set which, for every integer \(n \geq 2 \), is the sum of \(n \) mutually exclusive \textit{biconnected} subsets but which is not the sum of \(\text{infinitely many such subsets} \), being thus a \textit{finitely-containing connected set}. The method used will be a modification of that used by E. W. Miller to obtain a biconnected set without a dispersion point. The \textit{hypothesis of the continuum is assumed}, and use is made of the axiom of Zermelo.

The method used by Miller is dependent primarily upon showing

1 Presented to the Society, April 15, 1939.
3 A connected set is defined here so as to contain at least two points. The example there given consists of a connected set which is the sum of \(\text{infinitely many mutually exclusive biconnected subsets} \), each with a dispersion point, and a limit point of these subsets which none of them contains.
4 Loc. cit., p. 395, Problem 7. This example also solves the questions raised in Problems 4, 5, and 6, pp. 394–395. Problem 2 was answered in part in American Journal of Mathematics, vol. 54 (1932), pp. 532–535. On p. 533 it is proved for \(n = 2 \) that \(E_n \) is the sum of \(m \) mutually exclusive biconnected subsets where \(m \) is an integer greater than \(n \). And it is said that the proof is similar for \(n > 2 \). For \(E_3 \) the proof depends upon constructing \(3 \) biconnected sets, having only the origin in common. That a similar construction holds for any \(E_n \) \((n > 1)\), is seen as follows. The half cones \(x_1^2 + x_2^2 + \cdots + x_{n-1}^2 = ax_n^2 \), \((n \geq 0, -\infty < a < \infty)\), of \(E_n \) are each \(n - 1 \)-dimensional surfaces. As each one is composed of concentric spheres \(x_1^2 + x_2^2 + \cdots + x_{n-1}^2 = r^2 \) as is also \(E_{n-1} \), each half cone and \(E_{n-1} \) are topologically equivalent. As for \(n = 3 \), \(E_{n-1} \) is the sum of \(n \) biconnected sets, with only the origin in common, a mathematical induction proof will show that this is true for \(n > 3 \). For let the \(a \)'s be divided into \(C_{n+1,n} \) \((C_{n+1,n} \text{ is a binomial coefficient})\) mutually exclusive sets \(N_i, \ldots, N_c \) each dense in their sum. Let, for each \(a \) of \(N_i \) \((i = 1, \ldots, c)\), \(x_1^2 + x_2^2 + \cdots + x_{n-1}^2 = ax_n^2 \) be the sum of parts of the same \(n \) biconnected sets, where there is a total of \(n + 1 \) such sets \(B_i \), mutually exclusive except that they have the origin in common. Those \(B_i \)'s determined by \(N_i \) will be represented by the subscripts of that combination of \(1, 2, \ldots, n + 1 \), taken \(n \) at a time, that \(i \) of \(N_i \) represents. Then the above is seen to be true.

178
the existence of a widely connected subset M of an indecomposable continuum K. It is only the part of this subset M which is contained within a square Q_0 which causes M to be biconnected and it is this fact which enables us to show the existence of the desired set of this paper. We will take a countable infinity of mutually exclusive such squares plus interiors, Q_1, Q_2, Q_3, \ldots, each containing points of K and having the relation with K that Miller's square $ABCD$ has. We will use Q_i as Miller does to show that a subset B_{ni}, $(i = 1, 2, \ldots, n + 1; n = 1, 2, 3, \ldots)$, of a set M is biconnected. And Q will be used to show that there cannot be infinitely many mutually exclusive such subsets of M.

Let V be a countable subset of K, which is dense in $K \cdot (Q_1 + Q_2 + Q_3 + \cdots + Q)$. Let V_{ij}, $(i = 1, 2, 3, \ldots; j = 1, 2, \ldots, i + 1)$, be a countable subset of V everywhere dense in V and such that (a) $V_{ij} \cdot V_{ki}$ is dense in V if $i \neq k$, (b) for any i the $V_{i,k}$'s, $(k = 1, 2, \ldots, i + 1)$, are mutually exclusive, and (c) $V_{11} + V_{22} + \cdots + V_{i,i+1} = V$. For example V_{11} and V_{12} are mutually exclusive and $V_{11} + V_{12} = V$. Then V_{11} is divided into three mutually exclusive subsets, each dense in V, one for each of the sets V_{21}, V_{22}, V_{23} where V_{2j} is composed of such a set plus a similar subset of V_{12}. Each one of these three mutually exclusive subsets of V_{11} is then divided into four mutually exclusive sets, each dense in V, to obtain the parts of V_{31}, V_{32}, V_{33}, V_{34} contributed by V_{11}.

Let a division of V into infinitely many mutually exclusive subsets be U_1, U_2, \ldots, where each U_t, $(t = 1, 2, \ldots)$, is everywhere dense in V. Either (1) there exists a region R of Q and a V_{ij} such that a U_t contains $R \cdot V_{ij}$, or (2) there does not exist such an R. If (2) is true, $V_{ij} \cdot U_t \cdot V_{ii}$ is dense in $V \cdot Q$ for each i, j, t. Consider case (1). Suppose for example that U_t contains $R \cdot V_{32}$. Let R_1 be any region contained in R. Then U_1 contains a subset of V_{rj}, $(r > 3)$, which is dense in $V_{rj} \cdot R_1$, since $V_{32} \cdot R_1$ contains such a subset because of (a) above. Hence U_t, $(t \neq 1)$, cannot contain a $V_{rj} \cdot R_1$, since U_t and U_1 are mutually exclusive. Suppose now that there exist a U_t, $(t \neq 1)$, U_2 say, which contains a $V_{3j} \cdot R_1$, $(f \neq 2$, but equals 1 say), for some R_1 of R. Hence as above U_t, $(t \neq 2)$, does not contain a $V_{rj} \cdot R_3$, where R_3 is any region of R_1. There may exist now a U_t, $(t \neq 1, 2)$, U_3 say, which contains a $V_{3j} \cdot R_2$ for $f \neq 1$, 2 but $f = 3$ say. However since the U_t's are contained in $V_{31} + V_{32} + V_{33} + V_{34}$, there cannot exist a region R_3 of R_3 and a U_t, $(t \neq 1, 2, 3)$, such that U_t contains $R_3 \cdot V_{3j}$, $(f \neq 1, 2, 3)$, for $R_3 \cdot V_{34}$ must contain $R_3 \cdot (U_4 + U_5 + \cdots)$. Thus in this case there exists an R_3 of R such that there are at most three U_t's which contain a $V_{ij} \cdot R_3$, where R_3 is any region of R_3. Hence there exists an R_3 of R
and a U_i, U'' say, such that for every V_{ij}, $V_{ij} - V_{ij} \cdot U''$ is dense in $V \cdot R_a$. Therefore in both cases (1) and (2) above there exists a region R'' of Q and a U_i, U'' say, such that for every V_{ij}, $V_{ij} - V_{ij} \cdot U''$ is dense in $V \cdot R''$.

The proof used by Miller to show that his widely connected set M is biconnected is dependent upon having a countable subset Δ of M and upon having a set of simple closed curves within the square $ABCD$ which have nothing in common with M except points of Δ. One of these simple closed curves is taken for each subset of $\Delta = V$ which is dense in $V \cdot R$, where R is any region containing points of V. And the simple closed curves contain from the points of V only points from this subset of $V \cdot R$. The set of such possible subsets is c, the power of the linear continuum.

Following the method of Miller arrange in a well ordered sequence the continua C_a which separate K: $C_1, C_2, C_3, \ldots, C_a, \ldots$, $a < \Omega_a$, where Ω_a is the first transfinite ordinal number to correspond to the cardinal number a of the linear continuum. Let the regions of Q be well ordered as well as the possible divisions $D_1, D_2, \ldots, D_a, \ldots$ of V into infinitely many mutually exclusive subsets U_1, U_2, \ldots. As the power of this set of regions and the power of the set of D_a's are both c, let there be a one-to-one correspondence between each of these and the sequence $C_1, C_2, \ldots, C_a, \ldots$.

Choose for each C_a, having nothing in common with the interior of the square Q, a point set M_{ia} for each i and in each Q, construct a simple closed curve J_{ia}, exactly as Miller does for his M, using, for each i, Q_i, V in place of his $(ABCD) \cdot \Delta$. Thus in K, exterior to Q, we have infinitely many mutually exclusive sets, $N_1, N_2, \ldots, N_a, \ldots$ say, each exactly similar to Miller's biconnected set M, except for $K \cdot Q$. In each region R_a of Q let a simple closed curve J_a'' be constructed, by a method similar to that used by Miller, so that each V_{ij} is dense in $K \cdot J_a''$. Each infinite division D_a above of V determines a U_a'' and an R_a'' of Q such that, for each i, j, $V_{ij} - V_{ij} \cdot U_a''$ is dense in $V \cdot R_a''$. In each R_a'' construct a simple closed curve J_a'' such that each V_{ij} is dense in $K \cdot J_a''$ but $J_a'' \cdot U_a'' = 0$. For each C_a separating $Q \cdot K$ choose for each V_{ij} a point or vacuous set, according to whether or not $C_a \cdot V_{ij}$ is vacuous, obtaining for each such C_a an M_{ija} of Q with the properties of Miller's M_a's. No $J_{ia} + J_a''$ contains a point of an M_{ija} and no two M_{ija}'s consist of the same point.

6 E. W. Miller, loc. cit., p. 129.
The method used is dependent upon having chosen at any time during the process, under the hypothesis of the continuum, at most a countable infinity of points in $M \cdot (C_1 + C_2 + \cdots + C_5)$, where $M = N_1 + N_2 + \cdots + V + M_{111} + M_{121} + \cdots + M_{112} + M_{122} + \cdots$. This is true here just as it was for Miller's M_a's. As the set of composants of K is of the power of the linear continuum, new points can always be chosen for new C_a's, and each choice can be made so that no composant contains more than one point of M.

The set M is widely connected, for each C_a contains at least one point of M and no composant of K contains more than one point of M. Let B_{1g}, $(g = 1, 2)$, contain all of $N_g + [V_{1g} + \sum_{a=1}^{10} M_{1ga}] \times Q$, and let in addition B_{11} contain all the rest of M, with the exception of the rest of M in Q, and let B_{12} contain this. Hence B_{11} and B_{12} are mutually exclusive sets whose sum is M. Each is connected, for every C_a contains a point of each. Just as Miller showed, each B_{1g} is biconnected, for suppose that B_{11}, say, is the sum of the two mutually exclusive subsets W_1 and W_2. As $W_1 \cdot V$ must be dense in $Q_1 \cdot V$, there exists a $J_{1a} \cdot M$ of Q_1 contained entirely in $W_1 \cdot V$, according to the construction of the J_{1a}'s. As B_{11} is widely connected, this is impossible. Hence M is the sum of two mutually exclusive biconnected subsets B_{11} and B_{12}.

In a similar manner for $n > 1$ it is seen that M is the sum of $n+1$ mutually exclusive biconnected subsets $B_{n1}, B_{n2}, \cdots, B_{nn,n+1}$, where B_{nj} contains $N_j + [V_{nj} + \sum_{a=1}^{10} M_{nja}] \times Q$ of M and B_{n1} contains all the rest of M, except the rest of M contained in Q_1, and B_{n2} contains this.

It is seen however that M is not the sum of infinitely many mutually exclusive connected subsets T_1, T_2, \cdots, for every region of Q contains a J_d' and so each connected set T_i would contain a U_i dense in $V \cdot J_d'$ and so dense in $V \cdot Q$. This U_i is also dense in V because of the J_{ia}'s. Thus $T_1 \cdot V, T_2 \cdot V, \cdots$ is a division D_i of V into infinitely many mutually exclusive subsets U_1, U_2, \cdots each dense in $V \cdot Q$. Hence one of these is a U'' which does not contain a point of some J_d''. Therefore the T_i, such that $U'' = T_i \cdot V$, cannot be connected.

Thus it is seen that M is an example of a finitely-divisible connected set and similarly of a finitely-containing connected set, since each connected subset of M is widely connected.

New Mexico State College

7 E. W. Miller, loc. cit., p. 126, Theorem 7.