AN EXTENSION OF A COVARIANT DIFFERENTIATION PROCESS

MARIE M. JOHNSON

Craig\(^2\) has considered tensors \(T^\alpha_\beta; \ldots\) whose components are functions of \(n\) variables represented by \(x\) and their \(m\) derivatives \(x', x'', \ldots, x^{(m)}\). He obtained the covariant derivative

\[
T^\alpha_\beta; \ldots x^{(m)}y - mT^\alpha_\beta; \ldots x^{(m)}\gamma\{^\lambda_\gamma\}, \quad m \geq 2,
\]

where

\[
\{^\lambda_\gamma\} = \frac{\partial}{\partial y^\gamma} \Gamma^\lambda_\gamma + (1/2) R^\beta_\gamma x^\alpha x^\beta \delta^\lambda_\alpha,
\]

and partial differentiation in (1) is denoted by the added subscript. Throughout, a repeated letter in one term indicates a sum of \(n\) terms. The purpose of this note is to derive another tensor from \(T^\alpha_\beta; \ldots\) whose covariant rank is one larger. The general process will be shown clearly by using \(T^\alpha(x, x', x'', x''')\).

The extended point transformation

\[
x^\alpha = x^\alpha(y), \quad x'^\alpha = \frac{\partial x^\alpha}{\partial y^i} y^i,
\]

\[
x''^\alpha = \frac{\partial x^\alpha}{\partial y^i} y'^i + \frac{\partial^2 x^\alpha}{\partial y^i \partial y^j} y'^i y'^j + \cdots, \quad \alpha = 1, \ldots, n,
\]

gives the tensor equations of transformation of the tensor \(T^\alpha\) as

\[
\bar{T}^i(y, y', y'', y''') = T^\alpha(x, x', x'', x''') \frac{\partial y^i}{\partial x^\alpha},
\]

where \(y\) stands for the \(n\) variables \(y^1, y^2, \ldots, y^n\) and a similar notation is used for the derivatives \(y', y'', y'''\). On differentiating equations (3) with respect to \(y'^k\) it is found that

\[
\bar{T}_y^{i,k} = \left(T^\alpha_\beta \frac{\partial x^\beta}{\partial y^k} + T_z^\alpha_\beta \frac{\partial x'^\beta}{\partial y'^k} + T_x^\alpha_\beta \frac{\partial x''^\beta}{\partial y''^k} + T_y^\alpha_\beta \frac{\partial x'''^\beta}{\partial y'''^k} \right) \frac{\partial y^i}{\partial x^\alpha}.
\]

The derivatives can be expressed by using the following general formulas:

\footnote{1} Presented to the Society, April 15, 1939.
\[
\frac{\partial x^{(m-1)\beta}}{\partial y^{(m-2)k}} = (m - 1) \frac{\partial x^{\beta}}{\partial y^k}, \quad \frac{\partial x^{(m)\beta}}{\partial y^{(m-2)k}} = \frac{m(m - 1)}{2} \frac{\partial x^{''\beta}}{\partial y^k},
\]
in which \(\partial x^{''\beta}/\partial y^k\) are eliminated by

\[
\{\beta_k^i\} \frac{\partial x^\beta}{\partial y^l} = \frac{\partial x^{''\beta}}{\partial y^k} + \{\beta_\gamma^i\} \frac{\partial x^\gamma}{\partial y^k}.
\]

The derivatives \(\partial x^{''\beta}/\partial y^k\) are simplified by first writing

\[
x^{''\beta} = \frac{\partial x^\beta}{\partial y^i} y^{''i} + \Gamma^r_{ik} y^{''i} \frac{\partial x^\beta}{\partial y^r} - \Lambda^\beta_{ai} x^{''i} x^a,
\]
with the help of (2), (6) and \(f_{\alpha\beta\gamma}x^{''\beta} = 0\). It is necessary also to have

\[
\frac{\partial^2 x^\beta}{\partial y^i \partial y^k} = \Lambda^t_{jk} \frac{\partial x^\beta}{\partial y^i} - \Lambda^\beta_{ai} \frac{\partial x^a}{\partial y^i} \frac{\partial x^\beta}{\partial y^k},
\]
where

\[
\Lambda^\beta_{ai} = \Gamma^\beta_{ai} - \frac{1}{2} f_{\gamma\tau} (f_{\beta\gamma} \{\tau^i\} + f_{\gamma\tau\rho} \{\rho^i\} - f_{\beta\tau\rho} \{\rho^i\}).
\]

This is obtained from Taylor’s formula (19) in the following way. Multiply this formula by \((\partial y^k/\partial x^\tau)f^\beta_{\tau i} = (\partial x^\beta/\partial y^i)f^\beta_{\tau i},\) and sum for \(k\). Use the tensor equations for \(f_{\alpha\beta\gamma}\) and substitute from (6) for \(\partial x^{''\beta}/\partial y^i\).

By means of formulas (6) and (8) and the tensor \(Q^\beta(x, x', x'') = x^{''\beta} + \Gamma^\beta_{ai} x^{''i} x^a\) the partial derivatives of (7) have the form

\[
\frac{\partial x^{''\beta}}{\partial y^k} = -\{\beta_\gamma^i\} \frac{\partial x^\gamma}{\partial y^k} + \frac{\partial x^\beta}{\partial y^k} - 2\{\beta_\alpha^i\} \{\tau^i\} \frac{\partial x^\alpha}{\partial y^i} + 2\{\beta_\gamma^i\} \{\tau^i\} \frac{\partial x^\beta}{\partial y^i} + 2\{\gamma^i\} \{\tau^i\} \frac{\partial x^\gamma}{\partial y^i} - 2\{\beta_\alpha^i\} \{\tau^i\} \frac{\partial x^\alpha}{\partial y^i},
\]
in which we have the nontensor form

\[
|\beta_\gamma^i| = Q_{\gamma\beta} - Q_{\gamma\alpha} \{\gamma^i\} + Q_{\beta\tau} \Lambda^\beta_{\alpha\gamma}.
\]

If formulas (6) and (9) are substituted in equations (5) and the results used in (4), we find

\[
\overline{T}^{il}_{y^k} = (T^\alpha_{x^\beta} - 2T^\alpha_{x^\beta} \{\beta^i\} - 3T^\alpha_{y^i} \{\beta^i\} \{\delta^\beta\} \{\delta^\beta\} \{\beta^i\}) \frac{\partial x^\beta}{\partial y^i} \frac{\partial y^i}{\partial x^a} - (- 2\overline{T}^{il}_{y^i} \{\beta^i\} - 3\overline{T}^{il}_{y^i} \{\beta^i\} \{\beta^i\} \{\beta^i\}).
\]

Hence the new tensor whose covariant rank has been increased by one is

\begin{equation}
T^\alpha_{\varepsilon} - 2 T^\alpha_{\varepsilon'} \delta^\delta_{\varepsilon'} - 3 T^\alpha_{\varepsilon'' \varepsilon} \delta^\delta_{\varepsilon'' \varepsilon'},
\end{equation}

where \(\delta^\delta_{\varepsilon'} \) and \(\delta^\delta_{\varepsilon'' \varepsilon} \) are defined in (2) and (10).

Because of the general relations in (5) it is easy to verify that the tensor

\begin{equation}
T^{\alpha \cdots \varepsilon (m-2)}_{\varepsilon} - (m - 1) T^{\alpha \cdots \varepsilon (m-3)}_{\varepsilon'} \delta^\delta_{\varepsilon'} - \frac{m(m - 1)}{2} T^{\alpha \cdots \varepsilon (m)}_{\varepsilon''} \delta^\delta_{\varepsilon''},
\end{equation}

has a covariant rank which is one larger than that of \(T^{\alpha \cdots \varepsilon} \), whose components are functions of \((x, x', \ldots, x^{(m)}) \).

If the components of the tensor \(T^\alpha(x, x', x'', x^{''''}) \) do not contain the derivatives \(x^{''''} \), then (11) reduces to Craig's covariant derivative (1), and if there are no \(x'' \) or \(x^{''''} \) derivatives, then the result is a partial differentiation with respect to \(x' \).

The usual rules for the derivative of a sum of tensors of the same type and rank and for the product of any tensors are preserved by this process.

If \(m = 2 \), a scalar \(T(x, x', x'') \) will give a covariant tensor which is similar to that in (11) when the tensor equations for \(T(y, y', y'') \) are differentiated with respect to \(y \) instead of \(y' \). The tensor is

\begin{equation}
T^\alpha_{\varepsilon} - T^\alpha_{\varepsilon'} \delta^\delta_{\varepsilon'} - T^\alpha_{\varepsilon'' \varepsilon} \delta^\delta_{\varepsilon'' \varepsilon'}.
\end{equation}

However, if \(m = 2 \) and a tensor \(T^\alpha(x, x', x'') \) is used, an extra term \(T^\delta \Lambda^\alpha_{\varepsilon} \) has to be added to three terms similar to those in (13). If this process is performed on the tensor \(Q^\alpha(x, x', x'') \), the result is the zero tensor.