By Theorem 2, the solutions of the equation (17) are given by (16).

If \(x_i = \rho_i, y_k = \sigma_k \) is any solution of (13) and we choose \(\alpha_i = \rho_i, \mu_k = \sigma_k, \lambda = f(\rho) \), we have that \(s = 0 \) and the solution becomes \(x_i = \rho_i K^{n-1}, y_k = \sigma_k K^{n+1} \), where \(K = A\lambda(AD-BC) \), which is equivalent to the given solution provided \(K \neq 0 \); that is, provided \(x_i = \rho_i, y_k = \sigma_k \) is not a solution of (14). It will be noted that if \(K \neq 0 \), then \(t \neq 0 \).

LOUISIANA STATE UNIVERSITY

A MULTIPLE NULL-CORRESPONDENCE AND A SPACE CREMONA INVOLUTION OF ORDER \(2n-1 \)

EDWIN J. PURCELL

PART I. A NULL-SYSTEM \((1, mn, m+n)\) BETWEEN THE PLANES
AND POINTS OF SPACE \((m, n=1, 2, 3, \ldots)\)

1. Introduction. Consider a curve \(\delta_m \) of order \(m \) having \(m-1 \) points in common with a straight line \(d \), and a curve \(\delta_n' \) of order \(n \) having \(n-1 \) points in common with a straight line \(d' \), \((m, n=1, 2, 3, \ldots)\).

It is assumed for the present that neither \(\delta_m \) nor \(d \) intersects either \(\delta_n' \) or \(d' \).

In general, through any point \(P \) of space there passes one ray \(\rho \) which intersects \(\delta_m \) once and \(d \) once, and one ray \(\rho' \) which intersects \(\delta_n' \) once and \(d' \) once; \(\rho \) and \(\rho' \) determine a plane \(\pi \), the null-plane of \(P \).

Conversely, a plane \(\pi \) determines \(m \) rays \(\rho_i \) and \(n \) rays \(\rho_i' \) lying in it which intersect, a ray \(\rho \) with a ray \(\rho' \), in \(mn \) points, the null-points of the plane \(\pi \).

Any point \(\alpha \) in general position determines a ray \(\rho \). As \(\alpha \) describes a line \(l \), the plane \(\pi \) of \(\rho \) and \(l \) contains \(n \) rays \(\rho_i' \), which intersect \(l \) in \(n \) points \(\beta \); conversely, any point \(\beta \) on \(l \) determines a ray \(\rho' \) which determines with \(l \) the plane \(\pi \), and \(\pi \) contains \(m \) rays \(\rho \) which intersect \(l \) in \(m \) points \(\alpha \)—one being the original \(\alpha \). Thus an \((m, n)\) correspondence is set up among the points of \(l \) with valence zero; there are \(m+n \) coincidences and therefore \(m+n \) points on any line \(l \) whose null-planes contain \(l \).

2. Planes whose null-points behave peculiarly. We can obtain the last result by another method; this will yield additional information about planes whose null-points behave peculiarly.

Let a plane \(\pi \) turn about a line \(l \) as axis. A ruled surface will be generated by the \(m \) rays \(\rho_i \) lying in \(\pi \). This surface is of order \(m+1 \); \(\delta_m \) is a onefold curve on the surface and \(d \) is an \(m \)-fold line. Another

1 Presented to the Society, December 2, 1939.
ruled surface will be generated in this manner by the rays p' lying in \(\pi \); its order is \(n+1 \), \(\delta' \) is a onefold curve and \(d' \) is an \(n \)-fold line on this surface. The curve of intersection of these two surfaces is of order \((m+1)(n+1)\) and consists of \(l \) and a twisted curve \(k_{mn+m+n} \) of order \((m+1)(n+1)-1=mn+m+n\). This \(k_{mn+m+n} \) is the locus of the null-points of all planes \(\pi \) through \(l \).

Since a plane \(\pi \) meets this in \(mn \) points outside \(l \), \(k_{mn+m+n} \) must intersect \(l \) in \(m+n \) points through each of which a ray \(\rho \) and a ray \(\rho' \) pass which are coplanar with \(l \). Call such a point on \(l \), \(P \). The plane \(\rho \rho' \) is the null-plane of \(P \) and has \(mn-1 \) null-points outside \(l \), and it follows that plane \(\rho \rho' \) is tangent to \(k_{mn+m+n} \) at \(P \). The null-planes of the \(m+n \) points of intersection of \(k_{mn+m+n} \) with \(l \) are tangent planes of \(k_{mn+m+n} \) at these points.

The line \(d \), an \(m \)-fold line on the first of the two surfaces described above, intersects the second surface in \(n+1 \) points, which are \(m \)-fold points on the first surface. The line \(d' \) intersects the first of the two surfaces in \(m+1 \) points which are \(n \)-fold points on the second surface. These points all lie on \(k_{mn+m+n} \) and the \(m+1 \) are \(n \)-fold points of \(k_{mn+m+n} \) and \(n+1 \) are \(m \)-fold points of \(k_{mn+m+n} \) has \(m+1 \) \(n \)-fold points on \(d' \) and \(n+1 \) \(m \)-fold points on \(d \).

\(\delta_m \) has no actual double points or other multiple points. It is, however, rational and has \((m-1)(m-2)/2 \) apparent double points and its rank is \(r=m(m-1)-(m-1)(m-2)=2(m-1) \); that is, the order of its developable surface is \(2(m-1) \). Similarly, the order of the developable surface of \(\delta'_n \) is \(2(n-1) \). The line \(l \) will intersect \(2(m-1) \) tangents of \(\delta_m \) and \(2(n-1) \) tangents of \(\delta'_n \). In the plane \(\pi \) through \(l \) and a tangent line \(t \) of the first group, two rays \(\rho \) coincide in the line which joins the point of tangency of \(t \) with the intersection of \(d \) and \(\pi \). Of the \(mn \) null-points in the plane \(\pi \), \(n \) lie on each of the other \(m-2 \) rays \(\rho \), and \(2n \) fall two and two together on the coinciding rays; in these points \(k_{mn+m+n} \) is tangent to the plane of \(l \) and \(t \) and the number of these planes is \(2(m+n-2) \).

From the discussion of this section we have the following conclusions:

(1) The planes, \(m \) of whose null points coincide with a point of \(d \), envelope a surface of class \(n+1 \); and the planes, \(n \) of whose null points coincide with a point of \(d \), envelope a surface of class \(m+1 \).

(2) The planes, \(2n \) of whose null-points coincide two and two on a ray \(\rho \), envelope a surface of class \(2(m-1) \), \(n \) of the remaining null-points lying on each of the other \(m-2 \) rays \(\rho \); the planes, \(2m \) of whose null-points coincide two and two on a ray \(\rho' \), envelope a surface of class
2(n−1), m of the remaining null-points lying on each of the other n−2 rays ρ′.

Consider a plane π through l, whose intersection with d is also an intersection with δ_m. Call this common point of d and δ_m, Δ. Then the rays ρ_i lying in π will be the m−1 lines joining Δ to the m−1 points of intersection of δ_m and π, not lying on d, and the line λ joining Δ to the intersection of l and the plane of d and the tangent line to δ_m at Δ. This line λ will be the limiting position of a ray ρ as a plane revolves about l into the position of π.

In the osculating planes of δ_m and δ'_m, three rays coincide. Therefore, in the osculating planes of δ_m, 3n of the null-points coincide three and three on the triple ray; in the osculating planes of δ'_m, 3m of the null-points coincide three and three on the triple ray.

3. Points whose null-planes behave peculiarly. Consider a point P on d. The point P determines one ρ'. Any plane π through ρ' determines m rays ρ through P. Therefore π counts m times as null-plane of P. Conversely, for every plane through ρ' there fall m null-points together at P. The surface of class n+1 mentioned in §2 must have the planes π as tangent planes. This surface is a ruled surface consisting of rays ρ' which intersect d, and conversely. Call this surface Σ.

The surface formed by rays ρ' which intersect a general straight line l is (§2) of order n+1, and d intersects this surface in n+1 points. Thus there are n rays ρ' which intersect d and also an arbitrary line l. Therefore the surface Σ is of degree n+1. The line d is a onefold directrix on Σ_{n+1} and d′ is an n-fold directrix; for, the n-ic cone of δ'_m projected from a point of d′ will intersect d in n points. The locus of points whose null-planes have m null-points coinciding is Σ_{n+1}.

Similarly, the ruled surface Σ_{m+1} of order m+1, consisting of rays ρ that intersect d′, is the locus of points whose null-planes have n null-points coinciding.

Now Σ_{n+1} and Σ_{m+1} have mn+1 generators in common. For the congruence of rays ρ has the characteristic (1, m) and the congruence of rays ρ′ has the characteristic (1, n) so that, from Halphen’s theorem,² there are 1·1+m·n=mn+1 common rays.

Since both rays ρ and ρ’ through any point on one of these mn+1 common rays coincide, any plane through the ray can be taken as null-plane of the point. Every plane of the pencil through any one of the mn+1 common rays has m null-points coinciding on d and n null-points coinciding on d′.

² C. M. Jessop, A Treatise on the Line Complex, 1903, p. 259.
The intersection of Σ_{n+1} and Σ_{m+1}' is of degree $(n+1)(m+1)$. Since d' was shown to be an n-fold line on Σ_{n+1} and is clearly a onefold line on Σ_{m+1}', d' therefore counts n times in the intersection of these two surfaces. Similarly d counts m times in the intersection. Each of the $mn+1$ common rays of the two congruences counts once in the intersection. The parts just enumerated have total degree $n+m+mn+1 = (n+1)(m+1)$. Therefore, the locus of points whose null-planes have m null-points coinciding in one point and n null-points coinciding in another consists of the lines d and d' and the $mn+1$ common rays of the two congruences.

Now consider a plane containing d; let it intersect d' in D' and δ_n' in n points N_i. Every point of the n lines $D'N_i$ is a null-point of this plane—similarly for planes through d'.

Let point P be on δ_m but not on d. One ρ' is determined but every line from P to d will be a ρ. Therefore, any point of δ_m or δ_n' not also a point of d or d' has the pencil of planes through the ray of the opposite congruence as null-planes.

PART II. A SPACE CREMONA INVOLUTION OF ORDER $2n-1$ (n ANY INTEGER)

4. **Definition.** Not every skew curve of order n has a secant meeting it in $n-1$ points, and some have only one such secant, but there are also skew curves of order n that have two $(n-1)$-secant lines. In such case they lie on a quadric surface and have a singly infinite system of such secants. The two selected must be two generators of the same regulus.

Consider a fixed twisted curve δ_n of order n having $n-1$ points in common with a fixed line d and $n-1$ points in common with another fixed line d'. This construction occurs when the two twisted curves δ_n' and δ_m in Part I are identical but lines d and d' remain skew to each other.

A general point P determines a unique line intersecting δ_n once, at A, and d once, at D, and a unique line intersecting δ_n once, at B, and d' once, at D'. We define P', the correspondent of P, to be the intersection of lines AD' and BD. It is an involution.

5. **Equations.** Let d be $x_1 = 0$, $x_2 = 0$, and d' be $x_3 = 0$, $x_4 = 0$, and the parametric equations of δ_n be

$$x_1 = (as + bt) \prod_{1}^{n-1} (t_is - s_it), \quad x_2 = (cs + dt) \prod_{1}^{n-1} (t_is - s_it),$$

$$x_3 = (es + ft) \prod_{n}^{2n-2} (t_is - s_it), \quad x_4 = (gs + ht) \prod_{n}^{2n-2} (t_is - s_it),$$
where \((s_i, t_i), (i = 1, 2, \cdots, n - 1)\), are values of the parameter at the \(n - 1\) points of \(\delta_n\) on \(d\), and for \(i = n, n + 1, \cdots, 2n - 2\) are values of the parameter at the \(n - 1\) points of \(\delta_n\) on \(d'\). Then the equations of the involution are

\[
x'_1 = (ad - bc) \left[(ah - bg)x_3 - (af - be)x_4 \right] \prod_{1}^{n-1} \alpha_i \prod_{1}^{n-1} \beta_i,
\]

\[
x'_2 = (ad - bc) \left[(ch - dg)x_3 - (cf - de)x_4 \right] \prod_{1}^{n-1} \alpha_i \prod_{1}^{n-1} \beta_i,
\]

\[
x'_3 = (fg - eh) \left[(cf - de)x_1 - (af - be)x_2 \right] \prod_{1}^{2n-2} \alpha_i \prod_{1}^{2n-2} \beta_i,
\]

\[
x'_4 = (fg - eh) \left[(ch - dg)x_1 - (ah - bg)x_2 \right] \prod_{1}^{2n-2} \alpha_i \prod_{1}^{2n-2} \beta_i,
\]

where \(\alpha_i = (t_i d + s_i c)x_1 - (t_i b + s_i a)x_2\) and \(\beta_i = (t_i h + s_i g)x_3 - (t_i b + s_i e)x_4\).

It is of order \(2n - 1\), \(n\) any integer.

6. The fundamental system. Line \(d\) is an \((n - 1)\)-fold fundamental line of simple contact. The \(n - 1\) fixed tangent planes through \(d\) are \(\alpha_i = 0\), \((i = 1, 2, \cdots, n - 1)\). The line \(d\) is an \(F\)-line of the first species whose principal surface consists in the \(n - 1\) planes \(\beta_i = 0\), \((i = 1, 2, \cdots, n - 1)\).

Line \(d'\) is an \((n - 1)\)-fold \(F\)-line of simple contact. The \(n - 1\) fixed tangent planes through \(d'\) are \(\beta_i = 0\), \((i = n, n + 1, \cdots, 2n - 2)\). \(d'\) is an \(F\)-line of the first species whose \(P\)-surface is \(\prod_{1}^{2n-2} \alpha_i = 0\).

Points \(\Delta_i\), \((i = 1, 2, \cdots, n - 1)\), intersections of \(d\) with \(\delta_n\) whose parameters on \(\delta_n\) are \((s_i, t_i)\), and points \(\Delta'_i\), \((i = n, n + 1, \cdots, 2n - 2)\), intersections of \(d'\) with \(\delta_n\), are isolated \(n\)-fold \(F\)-points whose \(P\)-surfaces are, respectively, the above mentioned fixed tangent planes \(\alpha_i = 0\), \((i = 1, 2, \cdots, n - 1)\), and \(\beta_i = 0\), \((i = n, n + 1, \cdots, 2n - 2)\).

The \((n - 1)^2\) lines, each joining a \(\Delta_i\) to a \(\Delta'_i\), are simple \(F\)-lines without contact. They are \(F\)-lines of the second species.

The \((n - 1)^2\) lines of intersection of the fixed tangent planes through \(d\) with the fixed tangent planes through \(d'\) are simple \(F\)-lines without contact. They are \(F\)-lines of the second species.

7. Invariant locus. Every point of the curve \(\delta_n\) is invariant. Every line that intersects \(d\), \(d'\), and \(\delta_n\), each once, goes over into itself although it is not pointwise invariant. The locus of these lines is the quadric surface on which \(d\), \(d'\), and \(\delta_n\) lie.

8. Intersection of two homaloids. Since they are surfaces of order
$2n - 1$, two homaloids intersect in a space curve of order $(2n - 1)^2$.

The fixed part of this curve consists in the lines d and d', each counting $n(n - 1)$ times, the $(n - 1)^2$ lines joining the isolated n-fold F-points of d with those of d', each counting once, and the $(n - 1)^2$ lines of intersection of the fixed tangent planes through d with those through d', each counting once. The order of this fixed part is $2n(n - 1) + 2(n - 1)^2$.

The variable part of the curve of intersection is of order $2n - 1$ and corresponds to the line of intersection of the two general planes which go over into the pair of homaloids.

University of Arizona