for an arbitrary original polygon P. Further, no other relations $R_{n-p} = 0$ ($p \neq p_1$ or $p_2 \cdots$ or p_k) are satisfied by P' if P remains general (P' has no higher than the kth degree of regularity). This is also seen from (16'), where $\phi(\omega) \neq 0, R_{n-p} \neq 0$ (since P is general); therefore $R_{n-p} \neq 0$.

In fact, no relations of any kind besides (18) are satisfied by $P' = MP$ if P remains general. This is because, by the general theory of systems of linear equations, it can be readily shown that if the conditions (17) are satisfied by the coefficients α in (2), then the conditions (18) are sufficient as well as necessary in order that (2) be solvable for the z's in terms of the z''s. This is to say that for any polygon P' obeying (18) a polygon P can be found such that $P' = MP$; indeed, the class of such polygons P depends linearly on k complex parameters.

Brooklyn, N. Y.

AXIOMS FOR MOORE SPACES AND METRIC SPACES

C. W. VICKERY

We shall consider a set of five axioms in terms of the undefined notions of point and region. It will be shown that these axioms are independent and that they constitute a set of conditions necessary and sufficient for a space to be a complete metric space. It will also be shown that certain subsets of this set of axioms constitute necessary and sufficient conditions for a space to be (1) a metric space, (2) a Moore space, (3) a complete Moore space. Axiom 2 and a more general form of Axiom 1 have been stated by the author in an earlier paper [1]. Following terminology of F. B. Jones [2], a space is said to be a Moore space provided conditions (1), (2), and (3) of Axiom 1 (that is, Axiom 1a) of R. L. Moore’s Foundations of Point Set Theory [3] are satisfied. A space is said to be a complete Moore space provided it satisfies all the conditions of that axiom. Wherever the notion of region is employed, whether as a defined or an undefined notion, it is understood that a necessary and sufficient condition that a point P be a limit point of a point set M is that every region containing P contain a point of M distinct from P. The letter S is used to denote the set of all points.

1 Presented to the Society, April 20, 1935, under the title Sets of independent axioms for complete Moore space and complete metric space.
Axiom 0. Every region is a point set.

Axiom 1. There exists a countable family F such that (1) every element of F is a collection of regions covering S, (2) if R is a region and A and B are points of R, there exists a collection G of F such that if g is a region of G that contains A, g is a subset of $(R - B) + A$.

Axiom 2. If P is a point and H and K are regions containing P, there exists a region R containing P which is a subset both of the region H and of K.

Axiom 3. If α is a monotone descending sequence of closed point sets A_1, A_2, \ldots such that for each n there exists a monotone descending sequence ρ_n of distinct regions R_1, R_2, \ldots, R_n containing A_n, then there exists a point common to all the elements of α.

Axiom 4. If G is a collection of regions covering S, there exists a collection H of regions covering S such that if h_1 and h_2 are intersecting regions of H, then $(h_1 + h_2)$ is a subset of a region of G.

Theorem 1. In order that a space be a Moore space, it is necessary and sufficient that it satisfy Axioms 0, 1, and 2.

The necessity of these conditions is evident. We shall undertake to show their sufficiency without changing the notion of region. Let H_1, H_2, \ldots be a type ω sequence of all the elements of family F postulated by Axiom 1. Let G_1 denote the collection of all regions R such that R is a subset of a region of H_1. Let G_2 denote the collection of all regions R such that R is a subset of a region of H_1 and a region of H_2. For each positive integer n let G_n denote the collection of all regions R such that R is a subset of a region of H_i for each $i \leq n$. For each n, G_n covers S, by Axiom 2. Furthermore, for each n, G_n contains all the regions of G_{n+1}. The sequence G_1, G_2, \ldots satisfies all the conditions of Axiom 1 of R. L. Moore.

As a means to proving the next theorem, we shall prove the following lemma on the basis of Moore’s Axioms 0 and 1:

Lemma 1. If M is a set of points and G is a collection of domains covering M, there exists a collection H of domains covering M such that no domain of H is a subset of another domain of H and such that every domain of H is a subset of some domain of G.

Suppose that M is a set of points and G a collection of domains covering M. For each positive integer n let T_n denote the set of all points P of M such that some domain of G contains every region of G_n that contains P. Then $M = \sum_{n=1}^{\infty} T_n$. For each positive integer n
let θ_n denote a well-ordered sequence of the points of T_n. Let θ denote the sequence obtained by taking first the elements of θ_1, then the elements of θ_2, and so on. Let $t_{i,\mu}$ denote the first element of θ, where i is the smallest integer such that $t_{i,\mu}$ is an element of θ_i and where μ is an ordinal number denoting the order of $t_{i,\mu}$ in θ_i. (Some sets T_n may be vacuous.) We shall now define a sequence Δ of domains D_1, D_2, \cdots. Let D_1 denote the sum of all the regions of G_i that contain $t_{i,\mu}$. Let $t_{i,\nu}$ denote the first point of θ not contained in D_1. Let D_2 denote the sum of all the regions of G_j that contain $t_{i,\nu}$. In general, suppose that Δ_α denotes any abschnitt of Δ; then let $t_{k,\xi}$ denote the first point of θ not contained in any domain of Δ_α and let D_α denote the sum of all the regions of G_k that contain $t_{k,\xi}$. Let H denote the collection of all the domains of Δ. Then H has the required properties.

Theorem 2. In order that a space be a complete Moore space, it is necessary and sufficient that it satisfy Axioms 0, 1, 2, and 3.

We shall first show the sufficiency of these conditions. Let H_1, H_2, \cdots denote a type ω sequence of the elements of family F of Axiom 1. For each positive integer n let G_n denote the collection of all regions R such that R is a point or a proper subset of a region of H_n and of a region of G_{n-1}. It follows, with the help of Axiom 2, that sequence G_1, G_2, \cdots satisfies conditions (1), (2), and (3) of Moore's Axiom 1. It remains to be shown that it satisfies condition (4). Suppose that M_1, M_2, \cdots is a type ω sequence of nondegenerate closed point sets such that for each n, M_n contains M_{n+1} and is a subset of some region of G_n. Let R_n denote a region of G_n that contains M_n. Then R_n is a proper subset of a region R_{n-1} of G_{n-1}. Similarly R_{n-1} is a proper subset of a region R_{n-2} of G_{n-2}. Thus the conditions of Axioms 3 are satisfied and hence there exists a point common to all the sets M_1, M_2, \cdots.

We shall now show the necessity of these conditions by redefining region. Let G_1, G_2, \cdots be a sequence of collections of regions postulated by Moore's Axiom 1. For each n let H_n denote a collection of domains covering S such that no domain of H_n is a subset of another domain of H_n and such that every domain of H_n is a subset of a region of G_n. For each n, H_n exists, by Lemma 1. Let F denote the family of all collections H_n. Let $H = \sum_{n=1}^\omega H_n$. If the domains of H are called regions and if nothing else is called a region, then Axioms 0, 1, 2, and 3 are satisfied. (1) Clearly Axioms 0 and 1 are satisfied. (2) We shall show that Axiom 2 is satisfied. Let h and k denote two domains of H having a point P in common. There exists an integer n such that
every region of \(G_n \) that contains \(P \) is a subset of \(h \cdot k \). Let \(R \) denote a domain of \(H_n \). Then \(R \) is a subset of some region of \(G_n \) and hence of \(h \cdot k \). (3) We shall now show that Axiom 3 is satisfied. Let \(\alpha \) denote a type \(\omega \) sequence of closed point sets \(A_1, A_2, \ldots \), and for each \(n \) let \(\rho_n \) denote a type \(n \) sequence of domains of \(H, R_1, R_2, \ldots, R_n \) satisfying the conditions of Axiom 3. Since for each \(n \) no domain of \(H_n \) is a subset of another domain of \(H_n \), it follows that there exists an \(i \geq n \) such that some domain of \(\rho_n \) belongs to \(H_i \) and hence is a subset of a region of \(G_i \). It follows that for each \(n, A_n \) is a subset of a region of \(G_n \) and hence there exists a point common to all the elements of \(\alpha \).

Theorem 3. In order that a metric space be complete it is necessary and sufficient that it satisfy Axiom 3.

This follows immediately with the aid of Theorem 2 and a result of J. H. Roberts [4] to the effect that every metric space that satisfies Axiom 1 of R. L. Moore is complete. In a metric space every interpretation of region that preserves the notion of limit point satisfies Axioms 0, 1, 2, and 4.

Theorem 4. In order that a space be metric it is necessary and sufficient that it satisfy Axioms 0, 1, 2, and 4.

We shall first show the sufficiency of these conditions. We have shown that Moore's Axiom \(1_0 \) follows from Axioms 0, 1, and 2. If Axiom 4 be added, it can be shown that the following stronger analogue (due to R. L. Moore) of Moore's Axiom \(1_0 \) follows: “There exists a sequence \(G_1, G_2, \ldots \) such that (1) for each \(n, G_n \) is a collection of regions covering \(S \), (2) for each \(n, G_n \) contains \(G_{n+1} \), (3) if \(R \) is a region and \(A \) and \(B \) are points of \(R \), there exists an integer \(n \) such that if \(h \) and \(k \) are two regions of \(G_n \) having a point in common and such that \(h \) contains \(A \), then \(h + k \) is a subset of \((R - B) + A \).” Moore has shown that this proposition is a necessary and sufficient condition for a space to be metric.

We shall show the necessity of these conditions. Suppose that \(S \) denotes a space (\(D \)). Let all spheroids be called regions. Let collection \(H_n \) of family \(F \) be the set of all spheroids of radius less than \(1/n \). Clearly Axioms 0, 1, and 2 are satisfied. We shall show that Axiom 4 is satisfied. Let \(G \) denote a collection of spheroids covering \(S \). For each positive integer \(n \) let \(T_n \) denote the set of all points \(P \) such that there exists a spheroid of \(G \) containing the sum of every two-linked chain of spheroids of radius less than \(1/n \) that contains \(P \). Then \(S = \sum_{n=1}^{\infty} T_n \). Let \(Q_n \) denote the collection of all spheroids of radius
less than $1/n$ containing a point of T_n. Let $Q = \sum_{n=1}^{\infty} Q_n$. Then Q is the required collection, for the sum of every two-linked chain of regions of Q is a subset of some region of G.

Theorem 5. In order that a space be a complete metric space, it is necessary and sufficient that it satisfy Axioms 0, 1, 2, 3, and 4.

This is an immediate consequence of Theorems 3 and 4.

Independence Examples

For Axiom 1. Let S be the set of all real numbers between 0 and 1. Let p and q denote two real numbers such that $0 < p < q < 1$. Let the collection of all regions be the collection of all segments ab such that either (1) $0 < a < p$ and $q < b < 1$, or (2) $0 < a < p$ and $0 < b < q$, or (3) $q < a < 1$ and $q < b < 1$.

For Axiom 2. Let S be the set of all points on the x axis between $(-1, 0)$ and $(+1, 0)$. Let every segment of S not containing $O (0, 0)$ or having O as an end point be taken as a region. Furthermore, let every point set consisting of O together with a segment of S having O as an end point be taken as a region. If n is an odd positive integer, let collection H_n of family F of Axiom 1 be the collection of all regions not containing O and of length less than $1/n$, together with all left-hand regions containing O and of length less than $1/n$. If n is even, we have the same statement except that we substitute right-hand regions containing O for left-hand regions.

For Axiom 3. Let S be the set of all rational points on the x axis. Let the sets of all rational points of all segments be called regions.

For Axiom 4. Let S be the set of all points on or above the x axis. Let regions be the interiors of all circles lying wholly above the x axis, together with all point sets Q such that Q is the interior of a circle tangent to the x axis plus the point of tangency. (Example due to R. L. Moore.)

References

Austin, Texas