A THEOREM CONCERNING CLOSED AND COMPACT POINT SETS WHICH LIE IN CONNECTED DOMAINS

HARLAN C. MILLER

The purpose of this paper is to show that the following theorem holds in any space which satisfies Axioms 0, 1, and 2 of R. L. Moore's *Foundations of Point Set Theory*.²

If \(g \) denotes a point set, \(\bar{g} \) will be used to denote the set \(g \) together with all its limit points. For each positive integer \(n \), \(G_n \) will denote the collection \(G_n \) of Axiom 1.

Theorem. If \(M \) is a closed and compact subset of a connected domain \(D \), then there exists a compact continuum containing \(M \) and lying in \(D \).

Proof. For each point \(P \) of \(D \), there exists a region \(g_P \) of \(G_1 \) containing \(P \) such that \(\bar{g}_P \) is a subset of \(D \). By Axiom 2, there exists a connected domain \(d_P \) containing \(P \) which is a subset of \(g_P \). Let \(U_1 \) denote the collection of all domains \(d_P \) for each point \(P \) of \(D \). The point set \(M \) is closed and compact, and hence, by Theorem 22 of Chapter I, it is covered by a finite subcollection \(W_1 \) of \(U_1 \). By Theorem 77 of Chapter I, for each pair of domains \(x \) and \(y \) of \(W_1 \) there exists a simple chain \(xy \) whose links are domains of \(U_1 \) and whose first and last links are \(x \) and \(y \) respectively. Let \(V_1 \) denote the collection of all domains \(v \) such that for some two domains \(x \) and \(y \) of \(W_1 \), \(v \) is a link of the chain \(xy \). The sum of all the domains of the finite collection \(V_1 \) is a connected domain \(D_1 \). Similarly, there exists a finite collection \(V_2 \) of connected domains such that if \(v \) is any domain of \(V_2 \), then \(\bar{v} \) is a subset of some region of \(G_2 \) and of some domain of \(V_1 \), and such that the sum of the domains of \(V_2 \) is a connected domain \(D_2 \).

This process can be continued. Thus there exists an infinite sequence \(V_1, V_2, V_3, \ldots \) such that, for each \(n \), (1) \(V_{n+1} \) is a finite collection of connected domains such that if \(v \) is any one of them then \(\bar{v} \) is a subset of some region of \(G_{n+1} \) and of some domain of \(V_n \) and of \(D \), and (2) the sum of all the domains of \(V_n \) is a connected domain \(D_n \), containing \(M \).

By Theorems 79 and 80 of Chapter I, the set of all points common to all the sets of the sequence \(D_1, D_2, D_3, \ldots \) is a compact continuum, and it contains \(M \) and lies in \(D \).

A modification of this argument proves this theorem for a space which satisfies Axioms 0 and 1 and is locally arcwise connected.

The University of Texas

1 Presented to the Society, February 24, 1940.