ON THE ANALOGUE FOR DIFFERENTIAL EQUATIONS
OF THE HILBERT-NETTO THEOREM

RICHARD COHN

If

\[F_1, \ldots, F_r \]

is a finite system of differential polynomials in the unknowns

\(y_1, \ldots, y_n \), and if \(G \) is a differential polynomial which is annulled
by every solution of the system \((1)\), some power \(G^p \) of \(G \) is a linear
combination of the \(F_i \) and their derivatives of various orders, with
differential polynomials for coefficients. This analogue of the Hilbert-
Netto theorem was proved by J. F. Ritt\(^1\) for forms with meromorphic
coefficients, and by H. W. Raudenbush\(^2\) for the case of coefficients
belonging to an abstract differential field. In these proofs it is shown
that the denial of the existence of the exponent \(p \), above, of \(G \) leads
to a contradiction; no constructive method for obtaining admissible
values of \(p \) is given. The object of the present note is to present a
new proof of the analogue, for the case of meromorphic coefficients,
which is entirely constructive and produces a definite \(G^p \) as described
above.

Our proof will be based on the considerations in Chapters V and
VII of A.D.E. In Chapter VII, the problem of obtaining \(G \) is reduced
to the problem of determining unity as a linear combination of the \(F_i \)
in \((1)\) and their derivatives, in the case in which \((1)\) has no solutions.
In Chapter V it is shown how to decide, in a finite number of steps,
whether or not \((1)\) has solutions. Our problem thus assumes the fol­
lowing form: \textit{Given that \((1)\) has no solutions, it is required to express
unity as a linear combination of the } \(F_i \) \text{ and their derivatives}.

We assume that \((1)\) has no solutions and proceed to examine the
algorithm developed in §§65–67 of A.D.E. Adjoining to \((1)\) a finite
number of linear combinations of the \(F_i \) and their derivatives, we
obtain a system \(\Sigma \), devoid of solutions, with a basic set

\[A_1, \ldots, A_q \]

which has the property that the remainder of every form in \(\Sigma \) with
respect to \((2)\) is zero. If \((2)\) consists of a single form \(A \) which is an

\(^{1}\) Ritt, J. F., \textit{Differential Equations from the Algebraic Standpoint}, chap. 7, referred
to below as A.D.E. American Mathematical Society Colloquium Publications, vol. 14,
1932.

\(^{2}\) Raudenbush, H. W., \textit{Ideal theory and algebraic differential equations}, Transactions
of this Society, vol. 36 (1934), pp. 361–368.
element of \(\mathcal{J} \), the coefficient field of our forms, we secure immediately a representation of the type desired for unity. Let us suppose that this is not the case. Then (2), considered as a set of simple forms, cannot be a basic set of a prime system; if it were, (1) would possess solutions (A.D.E., §65). Thus there must exist, for some \(j \leq q \), an identity

\[
J_1^{\mu_1} \cdots J_{j-1}^{\mu_{j-1}}(SA_i - H_1H_2) - L_1A_1 - \cdots - L_{j-1}A_{j-1} = 0,
\]

where \(J_i \) is the initial of \(A_i, i = 1, \ldots, j-1 \); and where \(H_1 \) and \(H_2 \) are reduced with respect to \(A_1, \ldots, A_j \). Let \(\Lambda_i^{(k)} \), \(k = 1, \ldots, j+1 \), represent the systems \(\Sigma + J_1, \ldots, \Sigma + J_{j-1}, \Sigma + H_1, \Sigma + H_2 \), respectively. We treat each \(\Lambda_i^{(k)} \) as (1) was treated. The adjunction of a finite number of forms to any \(\Lambda_i^{(k)} \) produces a system \(\Sigma_k \), with no solutions, and with basic sets lower than (2) which furnish zero remainders for the forms in \(\Sigma_k^{(k)} \).

Let us suppose that each \(\Sigma_i^{(k)} \) contains an element of \(\mathcal{J} \) different from zero. We see on examining these systems that there exist relations, procurable by constructive methods,

\[
\begin{align*}
(4) & \quad 1 = P + M_0H_1 + M_1H_1' + \cdots, \\
(5) & \quad 1 = Q + N_0H_2 + N_1H_2' + \cdots, \\
(6) & \quad 1 = R_i + S_{ij}J_i + S_{ij}J_i' + \cdots, \quad i = 1, \ldots, j-1,
\end{align*}
\]

accents indicating differentiation, where \(P, Q \), and the \(R_i \) are linear in the \(F_i \) and their derivatives.

We equate to unity the product of the right-hand members of (4), (5), and the equations (6). If both sides of the resulting equation are raised to a sufficiently high power, determinable in advance, we secure, as Raudenbush has shown, a relation of the type

\[
1 = L + T_0V + T_1V' + \cdots,
\]

accents indicating differentiation, where \(L \) is linear in the \(F_i \) and their derivatives, and \(V = J_1^{\mu_1} \cdots J_{j-1}^{\mu_{j-1}}H_1H_2 \). From (3) we see that \(V \) can be obtained as a linear expression in the \(F_i \) and their derivatives. We thus have such an expression as we are seeking for unity.

If, on the other hand, some system \(\Sigma_i^{(h)} \) does not contain a nonzero element in \(\mathcal{J} \), we apply to it the entire process applied to \(\Sigma \). We form in this way systems with basic sets lower than those of \(\Sigma_i^{(h)} \). The systems thus formed for the various \(\Sigma_i^{(k)} \) receiving our present treatment will be called, with no attempt to describe their complete history, systems \(\Sigma_2 \). In each \(\Sigma_2 \) a basic set yields only zero remainders.

Let us suppose that each Σ_2 contains a nonzero element in \mathcal{F}. What precedes shows that, for each $\Sigma_1^{(j)}$ as above, unity is linear in the forms of $\Sigma_1^{(j)}$ and their derivatives; this, again, gives the expression which we are seeking for unity.

If there are Σ_2 which contain no nonzero element in \mathcal{F}, we give them the treatment which is now familiar. By §67 of A.D.E., we know that our process can continue for only a finite number of steps, so that the possibility of determining for unity an expression of the type desired is established.

Columbia University