A FIXED-POINT THEOREM FOR TREES

A. D. WALLACE

By a tree we mean a compact (= bicompact) Hausdorff space which is acyclic in the sense that

(i) if \(\mathcal{U} \) is a f.o.c. (= finite open covering) of a tree \(T \) then there is a f.o.c. \(\mathcal{B} \subset \mathcal{U} \) such that the nerve \(N(\mathcal{B}) \) is a combinatorial tree,

and which is locally connected in the sense that

(ii) if \(\mathcal{U} \) is a f.o.c. of \(T \) then there is a f.o.c. \(\mathcal{B} \subset \mathcal{U} \) whose vertices are connected sets.

It may be shown [3] that an acyclic continuous curve in the usual sense is a tree in our terminology. If \(g \) is a mapping which assigns to each point \(t \) of a topological space a set \(q_t \) in a topological space, then we say that \(q \) is continuous provided that for each \(t \) and each neighborhood \(U \) of \(q_t \) we can find an open set \(V \) containing \(t \) such that if \(t' \) is in \(V \) then \(q_{t'} \) is in \(U \). Our present purpose is to establish the following result:

(A) Let \(T \) be a tree and let \(q \) be a continuous point-to-set mapping which assigns to each point \(t \) a continuum \(q_t \) in \(T \). Then there is a \(t_0 \in T \) such that \(t_0 \in q_{t_0} \).

The proof (which is divided into several lemmas) uses strongly a technique introduced by H. Hopf [1]. However the present note has been made self-contained.

(A1) The intersection of two continua of \(T \) is again a continuum.

Proof. Let \(B_1, B_2 \) be two continua such that \(B_1 \cdot B_2 = C_1 + C_2 \) where the \(C_i \) are disjoint and closed. We can find disjoint open sets \(D_i \supset C_i \). Let \(t \in T - B_1 \cdot B_2 \). We can then find an open set \(V_t \) containing \(t \) which does not meet both \(B_1 \) and \(B_2 \). The sets \(D_i \) together with the sets \(V_t \) can be reduced to a f.o.c. \(\mathcal{U} \) of \(T \). Let \(\mathcal{B} \subset \mathcal{U} \) be the f.o.c. described in (i). Let \(\mathcal{B}_i \) be those vertices of \(\mathcal{B} \) on \(B_i \). It is easy to see that \(N(\mathcal{B}_i) \) is connected. If \(c_j \in C_j \) we can find a chain of 1-cells \(E_i \) in \(N(\mathcal{B}_i) \) whose first vertex contains \(c_1 \) and whose last vertex contains \(c_2 \). Now we cannot have \(E_i \subset D_1 + D_2 \) and \(E_i \) contains a vertex which is not on \(B_j \). Hence \(E_i \neq E_2 \) and so \(N(\mathcal{B}) \) is not a tree. This contradiction completes the proof.

1 Presented to the Society, May 3, 1941.
(A2) Any f.o.c. \(U \) of \(T \) contains a f.c.c. \(\mathfrak{f} \subseteq \mathfrak{U} \) so that each \(F_i \in \mathfrak{f} \) is connected and further \(N(\mathfrak{f}) \) is a combinatorial tree.

Proof. We can find a f.o.c. \(\mathfrak{B} \subseteq \mathfrak{U} \) such that \(N(\mathfrak{B}) \) is a tree. By a lemma due to Čech [5, p. 180] we can find a f.c.c. \(\mathfrak{f} \subset \mathfrak{B} \) such that \(\mathfrak{f} \) and \(\mathfrak{B} \) are combinatorially isomorphic. Let \(R_i \) be the f.o.c. \((V_i, T - F'_i) \). Using (ii) it is easy to see that there is a f.o.c. \(\mathfrak{B} \) such that each \(W_i \) is connected and \(\mathfrak{B} \subseteq R_i \), for each \(i \). Let \(t \) be fixed. If \(W_j \) meets \(F'_t \) then so does \(W_j \) and so is contained in \(V_i \). Let \(Q_t \) be the union of all such \(W_j \). Then the closure of this set has a component-wise decomposition, say \(Q_t = F_{t1} + F_{t2} + \cdots + F_{t\alpha} \). Let \(\mathfrak{f} \) be the f.c.c. \(\{ F_{ij} \} \). It is clear that the elements of \(\mathfrak{f} \) are connected and it is not hard to show that \(\dim \mathfrak{f} \leq 1 \), that is, at most two elements of \(\mathfrak{f} \) have a non-null intersection. If we have a chain

\[F_{i_1 j_1}, F_{i_2 j_2}, \ldots, F_{i_r j_r}, F_{i_1 j_1}, \quad r > 2, \]

such that each set meets the following but such that there are no other intersections, then the sets \(F_{i_1 j_1} \) and \(\sum_{i > 1} F_{i_1 j'_i} \) are connected and therefore by (A1) so is their meet, the set \(F_{i_1 j_1} \cdot F_{i_2 j_2} + F_{i_1 j_1} \cdot F_{i_r j_r} \). But then we would have \(F_{i_1 j_1} \cdot F_{i_2 j_2} \cdot F_{i_r j_r} \neq 0 \), a contradiction. It follows that \(N(\mathfrak{f}) \) is a tree.

(B) Let \(q \) be a mapping which assigns to each continuum \(K \) in \(T \) a continuum \(qK \) in \(T \) such that if \(K_1 \subseteq K_2 \), then \(qK_1 \subseteq qK_2 \). If \(\mathfrak{f} = \{ F_i \} \) is a f.c.c. with connected sets such that \(N(\mathfrak{f}) \) is a tree then there is an \(F_i \) for which \(F_i \cdot qF_i \neq 0 \).

Proof. Let \(N = N(\mathfrak{f}) \) and suppose that the vertices of \(N \) are \(e_i \). To each \(i \) we assign an \(i' \) so that \(F_i \) meets \(qF_i \). We then have a mapping \(e_i \rightarrow e_{i'} \) and since \(N \) is a tree it follows at once by a result due to Hopf [1, Lemma \(\gamma \)] that we can find an edge \(e_m e_n \) which is contained in the chain joining \(e_m \) to \(e_n \).\(^2\) We show that \(F_k \cdot qF_k \neq 0 \), \(k = m, n \). We have \(F_m \cdot F_n \neq 0 \) and by construction \(F_m \cdot qF_m \neq 0 \neq F_n \cdot qF_n \). Further

\[(*) \]

is a simple chain of sets. Of course it may happen that \(F_n \) precedes \(F_m \) in (\(* \)) but this is of no importance. Let \(X \) be the union of all the sets in (\(* \)) from \(F_m \) up to and including \(F_n \). Let \(Y \) be similarly defined for the other part of (\(* \)). Then \(X \) and \(Y \) are continua with \(X \cdot Y = F_m \cdot F_n \).

\(^2\) I am indebted to Professor S. Lefschetz for the remark that \(e_i \rightarrow e_{i'} \) generates a chain-mapping (that is, a mapping permutable with the boundary operator) if we define for the image of \(e_m e_n \) the chain joining \(e_m \) to \(e_n \). Since \(N \) is acyclic it follows at once that there is a fixed element. This may replace the result of Hopf.
Also $F_m + F_n$ is a continuum and so is $Z = qF_m + qF_n$. Clearly Z meets the end-vertices of (\ast). By (A_1) $Z \cdot (X + Y)$ is a continuum. Hence $Z \cdot X \cdot Y$ is not null. Thus $F_m \cdot F_n \cdot (qF_m + qF_n) \neq 0$ and this completes the proof of (B).

It is not hard to see that if q is a mapping of the type described in (A) then q satisfies the conditions in (B) if we define $qK = \sum qt$, $t \in K$, for each continuum K of T. The proof is quite similar to those for analogous results concerning single-valued mappings.

We now turn to a proof of (A). Suppose that no t is in qt. We can find a neighborhood R_t of t so that \overline{R}_t does not meet qt. Let $V_t = T - \overline{R}_t$. Since $qt \subset V_t$ we can find a neighborhood S_t of t so that $t' \in S_t$ implies $qt' \subset V_t$. Let U_t be the meet of R_t and S_t. We cover T by a finite subcollection $\{U_i\} = \{U_{ti}\}$ of the sets U_t. We can find a refinement \mathfrak{g} of $U = \{U_i\}$ which satisfies the conditions in (B) in consequence of (A_2). By (B) we can find a set F in \mathfrak{g} so that F meets qF. In other words we find a t in F such that F meets qt. Now F is in some U_i and hence qt is the corresponding V_t. But since F does not meet the set V_i it cannot meet qt. This contradiction completes the proof.

A continuous transformation $fM = N$ is said to be free (Hopf [1]) provided there is a continuous transformation $gMCZM$ such that $fgx = fx$ for each $x \in M$. The transformation f is monotone if the set $f^{-1}y$ is connected for each $y \in N$.

(C) No continuum admits a free monotone transformation onto a tree.

Proof. Let $fM = T$ be monotone and $gMCN$ be continuous. For each $t \in T$ we set $qt = fgg^{-1}t$. It is not hard to see that q is continuous and hence we may apply (A). But from $t \in qt$ it follows at once that there is an $x \in M$ with $fgx = fx$.

The transformations $fMCN$ and $gMCN$ have a coincidence (Lefschetz [2]) if there is an $x \in M$ with $fx = gx$. As in (C) we may show that

(D) A monotone transformation $fM = T$ of a continuum onto a tree admits a coincidence with any continuous transformation $gMCN$.

Remarks. The result (A) is usually called the Scherrer fixed-point theorem when q is single-valued and T is an acyclic continuous curve. For a list of papers concerning it see Hopf [1]. Corollary (C) will be found in [3]. The result (A) was found while constructing a proof of (D). Finally (A) is analogous to a result of S. Kakutani [4] who has shown that if S is an n-simplex and to each $s \in S$ we assign continuously a closed convex set qs then there is an $s_0 \in qs_0$.

"1941"]

A FIXED-POINT THEOREM 759
BIBLIOGRAPHY

PRINCETON UNIVERSITY

ON THE DEFINITION OF CONTACT TRANSFORMATIONS

ALEXANDER OSTROWSKI

If \(z \) is a function of \(x_1, \ldots, x_n \) and \(p_\nu = \frac{\partial z}{\partial x_\nu} \), \(\nu = 1, \ldots, n \), a contact transformation in the space of \(z, x_1, \ldots, x_n \), is defined by a set of \(n + 1 \) equations

(a) \[Z = Z(z, x_\mu, p_\mu), \quad X_\nu = X_\nu(z, x_\mu, p_\mu), \quad \nu = 1, \ldots, n, \]

such that firstly in calculating the \(n \) derivatives

\[P_\nu = \frac{\partial Z}{\partial X_\nu}, \quad \nu = 1, \ldots, n, \]

the expressions for the \(P_\nu \) are given by a set of \(n \) equations

(b) \[P_\nu = P_\nu(z, x_\mu, p_\mu), \quad \nu = 1, \ldots, n, \]

in which the derivatives of the \(p_\mu \) fall out; and secondly the equations (a) and (b) can be resolved with respect to \(z, x_\mu, p_\mu \):

(A) \[z = z(Z, X_\mu, P_\mu), \quad x_\nu = x_\nu(Z, X_\mu, P_\mu), \quad \nu = 1, \ldots, n, \]

(B) \[p_\nu = p_\nu(Z, X_\mu, P_\mu), \quad \nu = 1, \ldots, n. \]

These two postulates are equivalent with the hypothesis that the \(2n + 1 \) equations (a), (b) form a transformation between the two spaces of the sets of \(2n + 1 \) independent variables \((z, x_\nu, p_\nu), (Z, X_\nu, P_\nu)\) satisfying the Pfaffian condition

\[dZ = \sum_{\nu=1}^{n} P_\nu dX_\nu = \rho \left(dz - \sum_{\nu=1}^{n} p_\nu dx_\nu \right), \quad \rho \neq 0. \]