aded at the right (left) yielding the complete sets \((\alpha_1 \alpha_2; \lambda_1 \lambda_2; \alpha_1 \lambda_3, \lambda_1 \lambda_3)\), and so on.

It is then assumed that the preceding \((n+1)\)-ads belong to the general abstract space \(S_{n+1}(G, H)\) as defined by the author (abstract 46-9-438). When \(G = H = \) alternating (symmetric) group on \(n+1\) variables, the \(\alpha_i\) and \(\lambda_i\) are represented graphically as opposite vertices of regular polyhedra in euclidean \((n+1)\)-space or opposite faces of duals of the latter. When \(n=2\) the polyhedra are the octahedron and the cube. (Received January 30, 1942.)

135. A. R. Schweitzer: *On a class of ordered \((n+1)\)-ads relevant to the algebra of logic. II.*

The author develops a finite algebra of logic in which the complete set of ordered \((n+1)\)-ads of generalized constituent type relative to \(\alpha_1 \alpha_2 \cdots \alpha_{n+1}\) and the ordered dyads \((\alpha_1 \lambda_1), \cdots, (\alpha_{n+1} \lambda_{n+1})\) is expressed as a reflexive formal sum: \(\sum (\alpha_1 \alpha_2 \cdots \alpha_{n+1}) = \sum (I)\). The corresponding terms are \(\sum (A_1 \alpha_2 \cdots \alpha_{n+1}), \sum (\alpha_1 A_2 \cdots \alpha_{n+1}), \cdots, \sum (A_1 \alpha_2 \cdots \alpha_{n+1}), \cdots, \sum (\alpha_1 \alpha_2 \cdots \alpha_{n+1})\), where \(\sum (A_1 \alpha_2 \cdots \alpha_{n+1})\) is the sum of all \((n+1)\)-ads containing \(\alpha_1\), and so on. Then for \(n=2\), for example, \(\alpha_1 \alpha_2 \alpha_3 = \sum (A_1 A_2 A_3) = \sum (A_1 \alpha_2 \alpha_3) \times (A_2 \alpha_3 \alpha_1) \times (\alpha_1 \alpha_3 A_2)\), and so on. Also, \(\sum (A_1 \alpha_2 \alpha_3) + \sum (A_2 \alpha_3 \alpha_1) = \sum (\alpha_1 \alpha_2 \alpha_3)\), and so on. Finally it is assumed that the preceding \((n+1)\)-ads belong to the abstract relational space \(S_{n+1}(G, G)\), where \(G\) is an arbitrary substitution group on \(n+1\) variables (including the identical group). When \(G\) is the symmetric group the symbol \(\sum (\alpha_1 \alpha_2 \cdots \alpha_{n+1})\) can be replaced by the more economical symbol \(\sum (A_1)\), and so on, and this case reduces essentially to a previous development by the author (abstract 47-9-430). (Received January 30, 1942.)

Statistics and Probability

136. Irving Kaplansky: *Note on a common error concerning kurtosis.*

In many text books there is to be found a statement to the effect that a frequency curve with positive (negative) kurtosis falls above (below) the corresponding normal curve in the neighborhood of the mean. In this note examples are given to show that there is actually no such connection between kurtosis and the height of the curve at its mean. (Received January 19, 1942.)

Topology

137. Paul Civin: *Two-to-one mappings of three-dimensional sets.*

This paper is concerned with the proof of the non-existence of a continuous mapping defined on the closed three-cell in which each inverse image consists of exactly two points. Corresponding theorems for the arc and two-cell were proved by O. G. Harrold (*The non-existence of a certain type of continuous transformation*, Duke Mathematical Journal, vol. 5 (1939), pp. 789–793) and J. H. Roberts (*Two-to-one transformations*, Duke Mathematical Journal, vol. 6 (1940), pp. 256–262), respectively. (Received January 26, 1942.)

138. F. B. Jones: *A certain non-metric Moore space.*

The purpose of this paper is to give an example of a non-metric Moore space which is nevertheless the sum of a monotone increasing collection of completely separable