ON 3-DIMENSIONAL MANIFOLDS

C. E. CLARK

Let \(P \) be a 3-dimensional manifold. \(^1\) Let \(Q \) be a 2-dimensional manifold imbedded in \(P \). Moreover, let \(P \) and \(Q \) admit of a permissible simplicial division \(K \), that is, a simplicial division of \(P \) such that some subcomplex of \(K \), say \(L \), is a simplicial division of \(Q \). Let \(K_i \) and \(L_i \) denote the \(i \)th normal subdivisions of \(K \) and \(L \), respectively. We define the neighborhood \(N_i \) of \(L_i \) to be the simplicial complex consisting of the simplexes of \(K_i \) that have at least one vertex in \(L_i \) together with the sides of all such simplexes. By the boundary \(B_i \) of \(N_i \) we mean the simplicial complex consisting of the simplexes of \(N_i \) that have no vertex in \(L_i \). Our purpose is to prove the following theorem.

Theorem. The boundary \(B_2 \) is a two-fold but not necessarily connected covering of \(Q \), and change of permissible division \(K \) replaces \(B_2 \) by a homeomorph of itself.

Proof. The neighborhood \(N_i \) is the sum of a set of 3-dimensional simplexes. Some of these 3-simplexes, say \(a_1, a_2, \ldots \), have exactly one vertex in \(L_i \), others, say \(b_1, b_2, \ldots \), have exactly two vertices in \(L_i \), while the remaining, say \(c_1, c_2, \ldots \), have three vertices in \(L_i \). Since \(K_1 \) is a normal subdivision of \(K \), the intersection of \(L_1 \) and \(b_i \) or \(c_i \) is a 1-simplex or 2-simplex, respectively. Let \(a_1, a_2, \) and \(a_3 \) be the intersections of \(B_2 \) and \(a_1, a_2, \) and \(a_3 \), respectively. We shall regard \(a_1, a_2, \) and \(a_3 \) as triangles with vertices on the 1-simplexes of \(a_1, a_2, \) and \(a_3 \). Also we shall regard \(a_2, \) and \(a_3 \) as squares with vertices on the 1-simplexes of \(a_2, \) and \(a_3 \).

Any 2-simplex of \(L_1 \), say \(ABC \), is incident to exactly two of the \(c_i \). Let \(c_1 = ABCM \). There is a unique 3-simplex of \(N_1 \), say \(\sigma \), that is incident to \(ABM \) and different from \(c_1 \). This \(\sigma \) is either a \(c_1 \), say \(c_2, \) or a \(b_1 \), say \(b_2 \). If \(\sigma = c_2 \), then the triangles \(\gamma_1 \) and \(\gamma_2 \) have a common side. Suppose that \(\sigma = b_2 = ABMN \). The 2-simplex \(ABN \) is incident to a unique 3-simplex of \(N_1 \), say \(\tau \), with \(\tau \neq ABMN \). This \(\tau \) is either \(c_3 \) or \(b_3 \). If \(\tau = b_3 \), there is a \(c_4 \), or \(b_4 \). Finally we must find a \(c_p = ABSD, D \) in \(L_1, S \) in \(B_1 \). We now consider \(\beta_2, \beta_3, \ldots, \) and \(\beta_{p-1} \). The sum of these squares is topologically equivalent to a square. One side of the square is coincident with a side of \(\gamma_1 \) and the opposite side coincident with a side of \(\gamma_p \).

\(^1\) Our terminology is that of Seifert-Threlfall, *Lehrbuch der Topologie*. Manifolds are finite, while simplexes and cells are closed point sets.

Received by the editors July 21, 1941.
Since K_1 is a manifold, we can repeat the construction and associate with ABC and ABD a second pair of triangles in B_2 that are either incident along a common side or incident to opposite sides of a square. But there is not a third such configuration associated with ABC and ABD. We repeat the construction for all pairs of adjacent 2-simplexes of L_1. Then to each 2-simplex of L_1 there correspond two triangles in B_2. Moreover, if two 2-simplexes of L_1 are incident along a side, the four corresponding triangles can be paired so that the two triangles of each pair either have a common side or are incident to opposite sides of a square.

Since P and Q are 3- and 2-manifolds, respectively, we can say that Q is two-sided in P in the neighborhood of any point of Q. Moreover, the two γ's of B_2 that correspond to a 2-simplex of L_1 lie on opposite sides of Q (in the neighborhood of this 2-simplex).

Consider a vertex X of L_1 and the 2-simplexes Δ_i of L_1 that have X as a vertex. On one side of Q (in the neighborhood of X) there corresponds to each Δ_i a unique γ_i, and the γ's have the same incidences as the corresponding Δ's (we say that two γ's are incident if they are incident to opposite sides of a square). Let us denote by R the points of these γ's and the squares incident to pairs of these γ's. Let A denote the points of all α_i's that are in a_i's incident to X and on the side of Q that we are considering.

We shall show that $R+A$ is a 2-cell. To do this we shall show that $R+A$ is a manifold relative to its boundary, that its boundary consists of one or more circles, and that any 1-cycle of $R+A$ bounds in $R+A$. First we observe that B_2 is a manifold; this fact follows from the structure of B_2 and the fact that K_1 is a manifold; the argument is elementary and we omit it. Since $R+A$ is the sum of 2-cells $\alpha, \beta,$ and γ, the set $R+A$ is a manifold relative to its boundary.

To show that this boundary of $R+A$ consists of one or more circles we shall study the incidences among the cells of $R+A$. First, let a_i have X as a vertex. If a 2-dimensional side of a_i is not in B_1, this side must be a side of an a_j or b_j. Furthermore, this a_j or b_j has X as a vertex. Hence, any side of an α_i is also a side of an α_j or β_j of $R+A$. Next, let c_i have vertices $XABM, M$ in B_1. The sides of γ_i that are in XAM and XBM are sides of γ_j's or β_j's of $R+A$. But the side of γ_i in ABM is not incident to any other 2-cell of $R+A$. This side is part of the boundary of $R+A$. Finally, let b_i have vertices $XAMN, A$ in L_1. The sides of β_i in XAM and XAN are incident to sides of β_j's or γ_j's of $R+A$; the side of β_i in XMN is incident to an α_j or β_j of $R+A$; but the side of β_i in AMN is not incident to any other 2-cell of $R+A$. This side is part of the boundary of $R+A$. Examination of
the segments of the boundary of \(R+A \) shows that they fit together to form one or more circles.

We next show that if \(C \) is a 1-dimensional cycle of \(R+A \), then \(C \) bounds in \(R+A \). We shall find it convenient to replace \(A \) by a new set that will never be empty. We define \(A' \) to be \(A \) together with all vertices of \(\gamma \)'s of \(R \) that are not in the boundary of \(R+A \) and all sides of squares of \(R \) that are not sides of \(\gamma \)'s of \(R \) and not in the boundary of \(R+A \). If \(A \) is not empty, the set \(A' \) is the same as \(A \). But in any case \(A' \) is not empty, and \(R+A' \) is the same set as \(R+A \). The set \((R+A')-A'\) is homeomorphic to a 2-cell with an inner point removed because \((R+A')-A'\) can be obtained from the configuration of the 2-simplexes of \(L_1 \) that have \(X \) as a vertex by removing \(X \) and replacing some of the 1-simplexes by squares (open along one side). Hence, the cycle \(C \) is homologous in \(R+A' \) to a cycle on \(A' \), and we assume that \(C \) is on \(A' \). The set \(A' \) is part of \(b \), the boundary of the combinatorial neighborhood of \(X \) in \(K_2 \). Since \(K_2 \) is a manifold, the set \(b \) is a 2-sphere. Assume that \(C \) does not bound in \(A' \). Then \(C \) must surround a 2-simplex of \(b \) that is not in \(A' \). We easily find a 2-simplex of \(R+A' \) that is not incident along one of its sides to another 2-simplex of the manifold \(B_2 \). This contradiction proves that \(C \) bounds, and the proof that \(R+A \) is a 2-cell is complete.

Now we draw some lines on \(R+A \). If two \(\gamma \)'s have a common side, we draw a line coincident with this common side. If two \(\gamma \)'s are incident to a square, we draw a line across the square half way between the \(\gamma \)'s. All these lines are continued so that they meet at a point of \(A \). These lines give a subdivision of \(R+A \) that is combinatorially equivalent to the combinatorial neighborhood of \(X \) in \(L_1 \). The lines can be drawn for all \(R+A \) of \(B_2 \) and we get a subdivision of \(B_2 \) that is combinatorially equivalent to a two-fold but not necessarily connected covering of \(L_1 \).

A triangle of the covering is associated with a 2-simplex of \(L_1 \) and a side of \(Q \) (in the neighborhood of this simplex). Hence, a homeomorphism is determined between this covering and any covering obtained by changing the permissible division \(K \).

The theorem is not true with \(B_1 \) rather than \(B_2 \). For example, let \(Q \) be the boundary of a 3-simplex of \(K \). Then \(B_1 \) is a sphere and a point.

We can prove the following theorem in the same way but with much less effort.

Theorem. The above theorem is true if \(P \) and \(Q \) are replaced by 2- and 1-dimensional manifolds.

Purdue University