GENERATORS OF PERMUTATION GROUPS SIMPLY ISOMORPHIC WITH \(LF(2, p^n) \)

F. A. LEWIS

It is well known that the group \(LF(2, p^n) \) of linear fractional transformations of determinant unity in the \(GF[p^n] \) can be represented as a permutation group \(G \) of degree \(p^n + 1 \). The purpose of this note is to show that the generators of \(G \) follow from a slight extension of an argument used in a recent paper.¹

We obtain a representation of the abstract group \(L \) simply isomorphic with the special linear homogeneous group \(SLH(2, p^n) \) by means of the cosets \(K \) and \(KTS_\lambda \), where \(\lambda \) ranges over the \(p^n \) marks of the field \(u_0(=0), u_1, \ldots, u_m, (m=p^n-1) \). Let \(k_m=K \) and \(k_u=KTS_u \) for \(i=0, 1, \ldots, m \).

If \(p \) is any mark, \(KS_p=K \) and \(KTS_\lambda \cdot S_p=KTS_{\lambda+p} \), so that to \(S_p \) there corresponds the permutation

\[
(1) \quad s_p = \begin{pmatrix} k_\infty & k_0 & k_{u_1} & \cdots & k_{u_m} \\ k_\infty & k_p & k_{u_1+p} & \cdots & k_{u_m+p} \end{pmatrix}.
\]

If \(\lambda \neq 0 \), \(KTS_\lambda T=KTS_{-\lambda-1} \). Further, \(KTS_0 T=K \), so that to \(T \) there corresponds the permutation

\[
(2) \quad t = (k_0k_\infty \cdot k_{u_1}k_{-u_1-1} \cdots k_{u_m}k_{-u_m-1}).
\]

Hence \(L \) has a \((d, 1)\) isomorphism with \((s_p, t)\), where \(d \) is the order of a subgroup of \(K \) which is invariant in \(L \). The quotient group \((s_p, t)\) is simply isomorphic² with \(LF(2, p^n) \) and is of order \(p^n(p^{2n}-1)/d \), where \(d=2 \) or \(1 \) according as \(p>2 \) or \(p=2 \).

Theorem. A permutation group simply isomorphic with the group \(LF(2, p^n) \) of linear fractional transformations of determinant unity in the \(GF[p^n] \) is generated by \((1)\) and \((2)\), where \(p \) ranges over an independent set of additive generators of the field.

Corollary.³ A permutation group simply isomorphic with the group \(LF(2, p) \) is generated by \((k_0k_1k_2 \cdots k_{p-1})\) and \((k_0k_\infty \cdot k_1k_{i_1} \cdot k_2k_{i_2} \cdots)\), where \(ji_j \equiv -1 \) (mod \(p \)).

University of Alabama

¹ A note on the special linear homogeneous group \(SLH(2, p^n) \), this Bulletin, vol. 47 (1941), pp. 629–632. The notation and results of this paper are assumed above.

³ Compare with \(x'=x+1 \) and \(x'=-1/x \), which generate \(LF(2, p) \).