A CONJECTURE OF ORE ON CHAINS IN
PARTIALLY ORDERED SETS

SAUNDERS MACLANE

In a recent investigation, Ore has given a form of the Jordan-Hölder theorem valid for an arbitrary partially ordered set P. This theorem involves essentially the deformation of one chain into another by successive steps, each step being like that used in the conventional Jordan-Hölder theorem. Ore observes that his first theorem would be slightly easier to apply if it were proved under a weaker hypothesis. The modified theorem runs as follows:

THEOREM. If P is a partially ordered set in which every chain joining two elements is finite, then any complete chain between two elements $b < a$ can be deformed into any other complete chain between the same two elements.

The proof rests on this lemma:

LEMMA. Under the hypothesis of the theorem, if C is a complete chain from b to a which cannot be deformed into the complete chain D from b to a, there exist in P elements $b' < a'$ and complete chains C' and D' from b' to a' such that C' cannot be deformed into D' and such that $b \leq b'$, $a' \leq a$ where either $b < b'$ or $a' < a$.

PROOF. Case 1. C and D have in common the element e, $b < e < a$. Then either C cannot be deformed into D, or C cannot be deformed into D. In these two cases, set $b' = b$, $a' = e$ or $b' = e$, $a' = a$, respectively.

Case 2. C and D have no elements in common. Since C cannot be deformed into D, they cannot together constitute a simple cycle. There will then exist, say, elements c in C and d in D with $b < c < a$, $b < d < a$ and an element m in P with $c \leq m < a$, $d \leq m < a$. Because of the hypothesis that every chain in P joining two elements is finite, there will exist in P finite complete chains E_m, F_m, G_m. Then b is joined to a by four complete chains,

\[
C_b^e + C_a^c, \quad C_b^e + F_m^m + E_m^c, \\
D_b^d + G_d^m + E_m^a, \quad D_b^d + D_d^a.
\]

Received by the editors December 15, 1942.

2 Terminology and notation follow the paper of Ore.
Since C cannot be deformed into D, one of the following three deformations must be impossible:

$$
C_e \rightarrow F_e^m + E_m^a, \quad C_b^c + F_b^m \rightarrow D_b^d + G_d^m,
$$

$$
G_d^m + E_m^a \rightarrow D_d^a.
$$

In the first case we set $a' = a$, $b' = c$; in the second case, $a' = m$, $b' = b$; in the third case $a' = a$, $b' = d$. In each case we have the conclusion of the lemma.

To prove the theorem, suppose that P were to contain two complete chains C and D joining b to a in such wise that C cannot be deformed into D. By induction on n, the lemma gives in P elements $a = a_0 \geq a_1 \geq \cdots \geq a_n$ and $b = b_0 \leq b_1 \leq b_n \leq a_n$ such that for each i either $a_{i-1} > a_i$ or $b_{i-1} < b_i$ $(i = 1, \ldots, n)$, and such that there are complete chains C_n, D_n joining b_n to a_n with C_n not deformable into D_n. This construction can be carried on indefinitely, using the axiom of choice to select at each stage a definite pair a_{n+1}, b_{n+1}. This produces two sequences of elements a_i, b_i with

$$
b_0 \leq b_1 \leq b_2 \leq \cdots \leq a_2 \leq a_1 \leq a_0.
$$

Furthermore, the inequality sign holds an infinite number of times here, so that we obtain an infinite chain joining $b = b_0$ to $a = a_0$, contrary to the hypothesis of the theorem.

Harvard University