remarked that Theorem A may well carry, in such a study, a weight greater than that indicated by its relatively minor role in the proof of Theorem B.

University of Missouri

THE EQUIVALENCE OF \(n \)-MEASURE AND LEBESGUE MEASURE IN \(E^n \)

ARTHUR SARD

Consider a set \(A \) of points in euclidean \(n \)-space \(E^n \). For each countable covering \(\{A_i\} \) of \(A \) by arbitrary sets consider the sum

\[
\sigma = \sum_i c_m \delta(A_i)^m,
\]

where \(m \) is a fixed positive number, \(c_m = \pi^{m/2}/2^m \Gamma((m+2)/2) \), and \(\delta(A) \) is the diameter of \(A \). The constant \(c_m \) is, for integral \(m \), the \(m \)-volume of a sphere of unit diameter in \(E^m \). Let \(L_m(A; \alpha) \) be the greatest lower bound of all sums \(\sigma \) corresponding to coverings for which \(\delta(A_i) < \alpha \) for all \(i \) \((\alpha > 0)\). We define the \(m \)-measure of \(A \) as \(L_m(A) = \lim_{\alpha \to 0} L_m(A; \alpha) \). We denote the outer Lebesgue measure of \(A \) by \(|A|\).

We shall show that \(n \)-measure and outer Lebesgue measure are equal: \(L_n(A) = |A| \). A statement on this matter by W. Hurewicz and H. Wallman is true but misleading: these authors assert that \(L_n(A)/c_n \) and \(|A|\) may be unequal.\(^1\)

F. Hausdorff has introduced an \(m \)-measure \(L^S_m(A) \) defined as is \(L_m(A) \) except that coverings by spheres are used instead of coverings by arbitrary sets. He has shown\(^2\) that \(L^S_m(A) = |A| \). However \(L_m(A) \) and \(L^S_m(A) \) are unequal in general, as A. S. Besicovitch has shown\(^3\) for \(m = 1, n = 2 \). S. Saks\(^4\) and others define \(m \)-measure as \(L_m(A)/c_m \).

Our proof, which is an obvious extension of Hausdorff's proof, depends on two known theorems.

THEOREM I. Of all sets in \(E^n \) having a given diameter, the \(n \)-sphere has the greatest outer Lebesgue measure.\(^5\)

\(^1\) W. Hurewicz and H. Wallman, Dimension theory, Princeton, 1941, p. 104.
\(^4\) S. Saks, Theory of the integral, Warsaw, 1937, pp. 53-54.
Theorem II. Suppose that to each point x of a set A in E^n there corresponds a set of closed n-spheres centered at x of arbitrarily small positive diameter. Then for any given $\varepsilon > 0$, a countable number of the spheres cover A and are such that the sum of their Lebesgue measures is at most $|A| + \varepsilon$.

We now prove that

$$|A| \leq L_n(A) \leq L_n^S(A) \leq |A|.$$

For any countable covering $\{A_i\}$ of A,

$$|A| \leq \sum_i |A_i| \leq \sum_i c_n \delta(A_i)^n$$

by Theorem I. Hence $|A| \leq L_n(A ; \alpha)$ for all α and $|A| \leq L_n(A)$.

The definitions imply that $L_n(A) \leq L_n^S(A)$.

Finally, given $\varepsilon > 0$ and $\alpha > 0$, assign to each point x of A the set of all closed spheres centered at x and of positive diameter less than α. Then by Theorem II a countable number of these spheres $\{S_i\}$ cover A and are such that

$$\sum_i |S_i| = \sum_i c_n \delta(S_i)^n \leq |A| + \varepsilon.$$

Hence $L_n^S(A ; \alpha) \leq |A|$ and $L_n^S(A) \leq |A|$.

Queens College

H. Rademacher, *Eineindeutige Abbildung und Messbarkeit*, Monatshefte für Mathematik und Physik vol. 27 (1916) p. 190. The case $|A| = \infty$ is not excluded.