ON THE EQUATION $\chi \alpha = \gamma \chi + \beta$ OVER AN ALGEBRAIC DIVISION RING

R. E. JOHNSON

1. Introduction and notation. The main purpose of this paper is to give necessary and sufficient conditions in order that the equation

$$(1) \quad \chi \alpha = \gamma \chi + \beta$$

have a solution χ over an algebraic division ring. In case a solution exists, it is given explicitly if it is unique; otherwise, a method of obtaining one of the solutions is given. The application of the results to a quaternion algebra is discussed in the final section.

Let R be a division ring algebraic over its separable\(^1\) center F, and λ a commutative indeterminate over R. Using the notation of Ore,\(^2\) a polynomial $a(\lambda) \in R[\lambda]$ of degree n,

$$(2) \quad a(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_0,$$

will be called reduced if $a_n = 1$. The unique reduced polynomial $m(\lambda) \in F[\lambda]$ of minimum degree for which $m(a) = 0$ will be labelled $m_\alpha(\lambda)$. It is apparent that $m_\alpha(\lambda)$ is irreducible over $F[\lambda]$. The ring of all elements of R which commute with α will be denoted by R_α.

The substitution of an element of R for λ in the polynomial (1) is not well defined, as λ commutes with elements of R, whereas the elements of R do not all commute among themselves. However, unilateral substitution is well defined. We shall use the symbol $a^r(\beta)$ to mean that β has been substituted for λ on the right in (2), so that

$$(3) \quad a^r(\beta) = a_n \beta^n + a_{n-1} \beta^{n-1} + \cdots + a_0.$$

Left substitution is defined similarly—as there is a complete duality between left and right substitution in our case, we shall discuss right substitution only. If $a^r(\beta) = 0$, β is called a right root of $a(\lambda)$. The notation $a(\lambda) |^r b(\lambda)$ is used to mean that $a(\lambda)$ is a right factor of $b(\lambda)$. As is well known, β is a right root of $a(\lambda)$ if and only if $(\lambda - \beta) |^r a(\lambda)$.

2. Preliminary lemmas. A division algorithm exists over $R[\lambda]$. The particular case of interest here is given by

\(^1\) That is, no irreducible polynomial in $F[\lambda]$ has a multiple root in R.

That is, the remainder on dividing a polynomial \(b(\lambda) \) on the right by \((\lambda - \alpha) \) is \(b^*(\alpha) \). For any two elements \(a(\lambda), b(\lambda) \) of \(R[\lambda] \), there exists a unique reduced greatest common right divisor and a unique reduced least common left multiple.

The following lemma is true for any ring\(^4\) \(R \). It is frequently proven for special cases.

Lemma A. If \(c(\lambda) = a(\lambda)b(\lambda) \), then \(b^*(\alpha) = 0 \) implies \(c^*(\alpha) = 0 \).

To prove this for a general ring, let \(a(\lambda) = \sum_{i=0}^{n} \alpha_i \lambda^i \), \(b(\lambda) = \sum_{j=0}^{m} \beta_j \lambda^j \); then

\[
(5) \quad c(\lambda) = \sum_{i=0}^{n} \alpha_i \left(\sum_{j=0}^{m} \beta_j \lambda^i \right) \lambda^i.
\]

From this form, it is apparent that \(c^*(\alpha) = 0 \) if \(b^*(\alpha) = 0 \).

In any polynomial ring which possesses a division algorithm, the following lemma holds.

Lemma B. If \(c(\lambda) = a(\lambda)b(\lambda) \), then \((\lambda - \alpha)^{\prime}c(\lambda) \) if and only if \((\lambda - \alpha)^{\prime}a(\lambda)b^*(\alpha) \).

From (4), \(c(\lambda) = a(\lambda)g(\lambda)(\lambda - \alpha) + a(\lambda)b^*(\alpha) \), and the lemma follows.

Over a division ring, this lemma can be put in the following form.

Lemma B'. If \(c(\lambda) = a(\lambda)b(\lambda) \) and \(\tau = b^*(\alpha) \neq 0 \), then \(a^*(\tau + \tau^{-1}) = 0 \) if and only if \(c^*(\alpha) = 0 \).

This result was obtained by Wedderburn,\(^4\) and later by Richardson\(^6\) and, in a more general form, by Ore.\(^2\) Another result of Wedderburn's\(^4\) is the following lemma.

Lemma C. If \(a^*(\tau \alpha \tau^{-1}) = 0 \) for all nonzero elements \(\tau \in R \), then \(m_a(\lambda) \rvert a(\lambda) \).

The following fundamental theorem was obtained by Wedderburn\(^4\) for division algebras and holds equally well for algebraic division rings.

Lemma D. If \(m_a(\lambda) \) is of degree \(n \), then there exist elements \(\alpha_1(=\alpha), \alpha_2, \ldots, \alpha_n \) in \(R \) such that

\(^4\) See C. C. MacDuffee, *Vectors and matrices* (Carus Mathematical Monographs, No. 7), Mathematical Association of America, 1943, Theorem 36.

(6) \[m_\alpha(\lambda) = (\lambda - \alpha_n)(\lambda - \alpha_{n-1}) \cdots (\lambda - \alpha_1). \]

A particular factorization of \(m_\alpha(\lambda) \) is needed in the proof of Theorem 2. To obtain this, we establish the following lemma.

LEMMA D'. There exist elements \(\sigma_{11}, \sigma_{12}, \ldots, \sigma_{1n} \in R \) such that, if

\[\sigma_{i+1} = \sigma_i \sigma_{i+1} \sigma_{i-1}^{-1}, \quad i = 1, 2, \ldots, n - 1, \]

where \(\sigma_{i0} = 1 \) for all \(i \), then \(m_\alpha(\lambda) \) has the factorization (6) for

\[\alpha_i = \sigma_{i} \sigma_{i-1} \sigma_{i-1}^{-1}, \quad i = 2, 3, \ldots, n. \]

That this is true can be seen inductively. Assume that \(\sigma_{11}, \sigma_{12}, \sigma_{13}, \ldots, \sigma_{1k-1} \) exist, \(k < n \), so that

\[m_\alpha(\lambda) = \alpha_{k+1}(\lambda - \alpha_k)(\lambda - \alpha_{k-1}) \cdots (\lambda - \alpha_1), \]

where \(\alpha_1, \alpha_2, \ldots, \alpha_k \) are given by (7) and (8). Let

\[\alpha_i(\lambda) = \alpha_{k+1}(\lambda - \alpha_k)(\lambda - \alpha_{k-1}) \cdots (\lambda - \alpha_i), \quad i = 1, 2, \ldots, k, \]

and

\[b_i(\lambda) = (\lambda - \alpha_k)(\lambda - \alpha_{k-1}) \cdots (\lambda - \alpha_i), \quad i = 1, 2, \ldots, k. \]

From Lemma C, there must exist an element \(\sigma_{1k} \in R \) such that \(b_i(\sigma_{1k} \alpha_{1k}^{-1}) = 0 \). Then \(\sigma_{1k} \alpha_{1k}^{-1} - \alpha_1 \neq 0 \), and by Lemma B', \(a_2(\sigma_{1k} \alpha_{1k}^{-1} - \alpha_1) \sigma_{1k} \alpha_{1k}^{-1} - \alpha_1 \sigma_{1k} \alpha_{1k}^{-1} - \alpha_1 \) \(= 0 \) or \(a_2(\sigma_{1k} \alpha_{1k}^{-1} - \alpha_1) \sigma_{1k} \alpha_{1k}^{-1} - \alpha_1 \sigma_{1k} \alpha_{1k}^{-1} - \alpha_1 \) \(= 0 \). Now, as \(b_1(\lambda) = \alpha_2(\lambda - \alpha_1) \) and \(b_1(\sigma_{1k} \alpha_{1k}^{-1}) = 0 \), \(b_2(\sigma_{1k} \alpha_{1k}^{-1}) \neq 0 \) from Lemma B'. Thus \(\sigma_{1k} \alpha_{1k}^{-1} - \alpha_2 \neq 0 \), so that \(a_2(\sigma_{1k} \alpha_{1k}^{-1} - \alpha_2) \sigma_{1k} \alpha_{1k}^{-1} - \alpha_2 \sigma_{1k} \alpha_{1k}^{-1} - \alpha_2 \) \(= 0 \) or \(a_2(\sigma_{1k} \alpha_{1k}^{-1} - \alpha_2) \sigma_{1k} \alpha_{1k}^{-1} - \alpha_2 \sigma_{1k} \alpha_{1k}^{-1} - \alpha_2 \) \(= 0 \). By induction, \(a_i(\sigma_{1k} \alpha_{1k}^{-1}) = 0 \), \(i = 1, 2, \ldots, k+1 \), so that we can select \(\alpha_{k+1} = \sigma_{k+1} \alpha_{k+1}^{-1} \).

It is apparent that \(m_\alpha(\tau \sigma^{-1}) = 0 \) for all nonzero \(\tau \in R \). That all roots of \(m_\alpha(\lambda) \) are of this form is given by the following lemma.

LEMMA E. If \(m_\alpha(\beta) = 0 \), then \(\beta \) is a transform of \(\alpha \).

To prove this, let \(m_\alpha(\lambda) = (\lambda - \beta) a(\lambda) \). From Lemma C, there must exist an element \(\tau \in R \) such that \(a(\tau \sigma^{-1}) \neq 0 \). Thus, in view of Lemma B', \(\beta = \sigma \sigma^{-1} \), where \(\sigma = a(\tau \sigma^{-1}) \).

3. **Principal theorems.** If either \(\alpha \) or \(\gamma \) is in \(F \), equation (1) becomes trivial. Therefore we shall assume that both \(\alpha \) and \(\gamma \) are not in \(F \). Define \(\nu_0 = \beta \), and, in general,

\[\nu_i = \gamma \beta + \gamma^{-1} \beta \alpha + \cdots + \gamma \beta \alpha^{i-1} + \beta \alpha^i, \quad i = 1, 2, \ldots. \]

Then, if \(m(\lambda) = \sum_{i=0}^{n} \mu_i \lambda^i \) is any polynomial in \(F[\lambda] \), any \(\chi \) which is a
solution of (1) is also a solution of

\[\chi m(\alpha) = \gamma m(\gamma) + \sum_{i=0}^{n} \mu \nu_i. \]

The discussion of (1) is divided quite naturally into two cases. The first case, which is the easier of the two, is for \(\gamma \) not a transform of \(\alpha \). The second case is for \(\gamma \) a transform of \(\alpha \).

Case 1. As \(\alpha \) and \(\gamma \) are not transforms of each other, \(m_\alpha(\gamma) \not= 0 \) in view of Lemma E. Thus, if we let \(m(\lambda) \) of (9) be \(m_\alpha(\lambda) \), we obtain

\[\chi = - [m_\alpha(\gamma)]^{-1} \gamma^{-1} \left(\sum_{i=0}^{n} \mu \nu_i \right) \]

as the unique solution of (9). A substitution of this value of \(\chi \) in (1) shows that it is also a solution of (1). As any solution of (1) is also a solution of (9), (10) gives the unique solution of (1). We have thus established the following theorem:

Theorem 1. If \(\alpha \) and \(\gamma \) are not transforms of each other, then

\[\chi \alpha = \gamma \chi + \beta \]

has a unique solution. If \(\gamma \) is not zero, this solution is given by (10).

Case 2. The remaining considerations are for \(\gamma = \tau \alpha \tau^{-1} \). It is apparent that the methods of Case 1 now fail, as \(m_\alpha(\gamma) = 0 \). Thus a new approach must now be made.

Equation (1) can now be put in the form

\[\chi \alpha = \tau \alpha \tau^{-1} \chi + \beta. \]

This equation has a solution if and only if the equation

\[\tau^{-1} \chi \alpha = \alpha \tau^{-1} \chi + \tau^{-1} \beta \]

has a solution. Therefore we need only consider an equation of the form

\[\chi \alpha = \alpha \chi + \beta. \]

The existence of solutions of this equation is given by the following theorem.

Theorem 2. Let \(\alpha \) be an element of \(R \) not in \(F \) with minimum polynomial \(m_\alpha(\lambda) = a(\lambda)(\lambda - \alpha) \) and \(\beta \) be a nonzero element of \(R \). Then the equation

\[\chi x = \alpha x + \beta \]

has a solution \(\chi \) in \(R \) if and only if \(\alpha^*(\beta_\alpha \beta^{-1}) = 0 \).

Proof. We shall first assume that there exists an element \(\chi \in R \) such that (11) is satisfied. Then, as \(m_\alpha(\chi \alpha \chi^{-1}) = 0 \) and \(\chi \neq \alpha \chi \), we have by Lemma B' that \(\alpha^*([\chi \alpha - \alpha \chi] \alpha [\chi \alpha - \alpha \chi]^{-1}) = 0 \). Thus \(\alpha^*(\beta_\alpha \beta^{-1}) = 0 \), and the first part of the theorem is established.

On the other hand, suppose that \(\alpha^*(\beta_\alpha \beta^{-1}) = 0 \). We shall now use the particular factorization of \(m_\alpha(\lambda) \) given in Lemma D'. Let the polynomials \(b_{ij}(\lambda) \) be defined by

\[b_{ij}(\lambda) = (\lambda - \alpha_i)(\lambda - \alpha_{i-1}) \cdots (\lambda - \alpha_j), \quad i \geq j = 1, 2, \ldots, n. \]

Also, let \(\beta_1 = \beta \), and recursively,

\[\beta_i = \beta_{i-1} \alpha - \alpha_i \beta_{i-1}, \quad i = 2, 3, \ldots, n. \]

There must exist an integer \(k \) such that \(b_{ik}(\beta_\alpha \beta^{-1}) \neq 0 \) and \(b_{k+1}(\beta_\alpha \beta^{-1}) = 0 \). As in the proof of Lemma D', the successive application of Lemma B' yields

\[b_{k+1+i+1}(\beta_\alpha \beta^{-1}) = 0, \quad i = 1, 2, \ldots, k. \]

The last application gives \(b_{k+1+i+1}(\beta_\alpha \beta^{-1}) = 0 \), so that \(\alpha_{k+1} = \beta_\alpha \beta_{k+1}^{-1} \). From (8), \(\alpha_{k+1} = \sigma_{k+1} \alpha \sigma_{k+1}^{-1} \): thus there must exist an element \(\delta_k \in R_\alpha \) such that \(\beta_k = \sigma_{k+1} \delta_k \). Now let us assume that there exist elements \(\delta_i \in R_\alpha \) and an integer \(m \) such that

\[\beta_i = \sum_{j=i}^{k} \sigma_{i+1} \delta_i, \quad i = m, m + 1, \ldots, k. \]

Then it follows from (7), (8), and (12) that

\[\beta_{m-1} \alpha - \alpha_m \beta_{m-1} = \sum_{j=m}^{k} (\sigma_{m} \alpha - \alpha_m \sigma_{m}) \delta_j, \]

so that

\[(\beta_{m-1} - \sum_{j=m}^{k} \sigma_{m} \delta_j) \alpha = \alpha_m (\beta_{m-1} - \sum_{j=m}^{k} \sigma_{m} \delta_j). \]

As \(\alpha_m = \sigma_m \alpha_m^{-1} \alpha_m^{-1} \), there must exist an element \(\delta_m \in R_\alpha \) such that

\[\beta_m = \sum_{j=m}^{k} \sigma_{m} \delta_j. \]

By induction,

\[\beta = \sum_{j=1}^{k} \sigma_{j} \delta_j. \]
From (7),
\[\beta = \sum_{j=1}^{k} \sigma_1 \delta_j \alpha - \sum_{j=1}^{k} \sigma_1 \delta_j \]
and thus, for any \(\delta \in R_a \),
\[\chi = \sum_{j=1}^{k} \sigma_1 \delta_j + \delta \]
is a solution of (11).

4. Special considerations. As a special case of Theorem 2, consider \(R \) as the ring of quaternions over a formally real field \(F \), \(R = F(1, i, j, k) \). If we let \(\alpha \) denote the conjugate of \(\alpha \), \(\alpha \) not in \(F \), then
\[m_\alpha(\lambda) = (\lambda - \alpha)(\lambda - \alpha). \]
Thus \(a(\lambda) = (\lambda - \alpha) \), and Theorem 2 can be written in the following form.

Corollary 1. If \(R \) is a quaternion algebra over a formally real field \(F \) and \(\alpha \) is an element of \(R \) not in \(F \), then
\[\chi \alpha = \alpha \chi + \beta \]
has a solution if and only if
\[(14) \quad \beta \alpha = \alpha \beta. \]

Having obtained one solution of (11) from (13), say \(\chi_1 \), then all solutions are given by \(\chi_1 + \delta, \delta \in R_a \). It is observed that (11) cannot have a solution if \(\beta \in R_a \)—as \(a^r(\beta \alpha \beta^{-1}) = a^r(\alpha) \) in this case, and \(a^r(\alpha) \) cannot be zero due to the separability of \(F \). However, it is not true that (11) always has a solution if \(\beta \) is not in \(R_a \). A simple example to show this is as follows: let \(R \) be the ring of quaternions over a formally real field \(F \). For \(\beta = i + j \) and \(\alpha = i \), (14) is not satisfied, and thus (11) can have no solution.

WASHINGTON, D. C.