of an n-cell, c, and an arc, a, such that $c \cdot a$ is a point which is an end point of a and an interior point of c. A T_1-set is a simple triod. In this note it is proved that Euclidean n-space does not contain uncountably many mutually exclusive T_{n-1}-sets. For $n=2$, this is a theorem due to Moore (Proc. Nat. Acad. Sci. U.S.A. vol. 14 (1928) pp. 85–88). (Received March 27, 1944.)

170. G. S. Young: *Concerning spaces in which every arc has two sides.*

Let S denote a connected, locally connected, complete metric space satisfying the following axiom: If AB is an arc and D is a domain containing $AB-(A+B)$, then D contains a connected domain which is separated by $AB-(A+B)$ into two connected domains, each having AB in its boundary. In this paper it is shown that if S is locally compact, it is a 2-manifold without boundary, which is closed if S is compact, and that if S is not locally compact, but satisfies certain “flatness” conditions, then it can be imbedded in a 2-manifold. A similar characterization and imbedding theorem is given for 2-manifolds with boundary. Several characterizations of the sphere are also given. (Received March 27, 1944.)

171. G. S. Young: *On continua whose links are non-intersecting.*

In this note, it is shown that if a compact metric continuum is not a simple link of itself and no two of its links intersect, then uncountably many are degenerate; also that the statement obtained by replacing the words “compact metric continuum” by “connected, locally connected, separable Moore space” is true. (Received March 27, 1944.)

NEW PUBLICATIONS

DODSON, B. M. See HYATT, D.

GLEASON, J. M. See DAUS, P. H.

HICKSON, A. O. See PATTERSON, K. B.

ROGOSINSKI, W. W. See HARDY, G. H.

WHYBURN, W. M. See DAUS, P. H.