CLUSTER POINTS OF SUBSEQUENCES

M. M. DAY

In the preceding paper [1] Buck defines a class of "subsequences" of a multiple sequence and shows that "almost all" of such subsequences have certain properties. This note is essentially based on a different choice of the definition of "subsequences"; that is, this paper and [1] are generalizations in different directions of a preceding paper by Buck and Pollard (reference 2 of [1]). In this discussion countability is the important property of the index systems such as the integers underlying the simple sequences or the \(n \)-tuples of integers underlying the multiple sequences. Countability is a slightly stronger condition than is necessary since the results will be shown to hold as well for functions of \(n \) variables as for multiple sequences; some other special cases are mentioned at the end of this paper. Also I modify Buck's approach by considering cluster points in neighborhood spaces rather than limit points in convergence spaces [3]. It may be mentioned that even for multiple sequences Theorems 1 and 2 of these papers are independent since Buck's set of "subsequences" is a set of measure zero in the set of "subsequences" considered here; my Theorem 3 contains the corresponding theorem of [1] as a special case. Lemma 1 and its corollary, Lemma 3, are the fundamental results on which the theorems rest; Lemma 3 is the generalization appropriate to this paper of the lemma in §3 of [1].

1. Preliminaries. If \(R \) is any set, a product measure can be defined in the set of characteristic functions of subsets of \(R \) [1, footnote 2] and this in turn induces a measure \(| \cdot | \) for subsets of the set \(\mathcal{E} \) of all subsets \(E \) of \(R \); this measure is non-negative, completely additive, and (if \(R \) is infinite) takes all values between 0 and 1 inclusive; its other principal characteristic is that if \(r_1, \ldots, r_k \in R \), then \(\{ E \mid \text{no } r_i \in E \} \) is of measure \(2^{-k} \); hence if \(E_0 \) is an infinite subset of \(R \) and \(A = \{ E \mid E \cap E_0 \text{ is empty} \} \), \(| A | = 0 \).

An index system \(\mathcal{R} = (R, \geq) \) is a set \(R \) and a binary relation \(\geq \) such that \(\geq \) is transitive and every element \(r_0 \) has a successor \(r_1 > r_0 \) such that \(r_0 \geq r_1 \). (In the language of [4] \(\mathcal{R} \) is oriented and has no terminal

1 Considerations suggested by the preceding paper of R. C. Buck.
2 Numbers in brackets refer to the Bibliography at the end of the paper.
3 The usual notation of \(\bigcup \) and \(\bigcap \) will be used for union and intersection of sets; \(\{ p \mid P \} \) will mean the set of all \(p \) having the property \(P \).
elements.) A set E in \mathcal{R} is called \textit{cofinal} in \mathcal{R} if for every r in \mathcal{R} there exists $r' \geq r$ with $r' \in E$. Let $E^* = \{r | r \geq r' \text{ for some } r' \in E\}$.

Note that if \mathcal{R} is the system of integers ordered by magnitude, then the cofinal subsets of \mathcal{R} are the infinite subsets; for g defined on a general index system \mathcal{R} it is clear that reducing the domain of definition of g to a cofinal subset E of \mathcal{R} is a generalization of the process of selecting a subsequence in case \mathcal{R} is the system of integers.

A subsystem $\mathcal{R}' = (R', \geq)$ of $\mathcal{R} = (R, \geq)$ is a subset R' of R with the order relation between points of R' defined by that in R; if R' is cofinal in the index system \mathcal{R}, then (R', \geq) is also an index system. Cofinality is transitive in a transitive system; that is, if R' is cofinal in (R, \geq) and R'' is cofinal in (R', \geq), then R'' is cofinal in (R, \geq).

We may note that if \mathcal{R} is the set of n-tuples of integers (the case studied in [1]), where $(i_1, \ldots, i_n) \geq (j_1, \ldots, j_n)$ if and only if $i_k \geq j_k$ for every $k \leq n$, then the product subsets defined by Buck are cofinal in \mathcal{R} but are very sparsely distributed in the set of all cofinal subsets of \mathcal{R}; to be precise, such sets form a set of measure 0 if $n \geq 2$. A product set in the set of n-tuples of integers, $\mathcal{R} = I \times I \times \cdots \times I$, is a set of the form $E_1 \times E_2 \times \cdots \times E_n$, $E_i \subseteq I$; the product sets define the class of "subsequences" used by Buck. If E_k is the set of elements of \mathcal{R} with all coordinates not greater than k and if A_k is the class of all subsets E of \mathcal{R} such that $E \cap E_k$ is a product set in E_k, then $A = \bigcap_k A_k$. It is easily seen that if $E' \subseteq E_k \{E | E \cap E_k = E'\}$ is of measure 2^{-n_k}; since there are $(2^k - 1)^n + 1 < 2^{n_k}$ product sets in E_k, it follows that $|A_k| < 2^{n_k - k^2}$; if $n \geq 2$, this tends to zero as k increases so $|A| = 0$.

Lemma 1. If \mathcal{R} has a countable cofinal subset and \mathcal{C} is the set of all cofinal subsets of \mathcal{R}, then $|\mathcal{C}| = 1$.

Let \mathcal{R}' be a countable cofinal subset of \mathcal{R} and suppose $E \in \mathcal{C}$; then there exists r in \mathcal{R} such that $(r)^* \cap E$ is empty. Since there exists r' in \mathcal{R}' such that $r' \geq r$, it follows that $(r')^* \cap E$ is empty. Since r' has an infinite number of distinct successors in \mathcal{R}', the set $A_{r'} = \{E | (r')^* \cap E$ is empty} is of measure zero. Since $\mathcal{E} - \mathcal{C} = \bigcup_{r' \in \mathcal{R}'} A_{r'}$, $|\mathcal{E} - \mathcal{C}| = 0$ so $|\mathcal{C}| = 1$.

By means of this lemma we can define a measure in \mathcal{C} by taking the measure in \mathcal{E} of elements of \mathcal{C}; since $|\mathcal{C}| = 1$, we can talk meaningfully about almost all cofinal subsets of \mathcal{R} [5, Theorem 1.1]. Note that cofinality of E is not affected by adding or removing a finite set, so \mathcal{C} is a "homogeneous" subset of \mathcal{E} and therefore if it is measurable must have measure 0 or 1; which case occurs when \mathcal{R} does not have a countable cofinal subset, I do not know.

X is a \textit{neighborhood space} [3] if for each x in X is defined a non-
empty family of subsets of X, the neighborhoods of x. If g is a function defined on an index system \mathcal{R} with values in a neighborhood space X, x is a limit point of g (symbol: $x = \lim_{\mathcal{R} \to x} g$) if for each neighborhood N of x and every r_0 in R there exists $r_1 \geq r_0$ such that $g(r) \in N$ whenever $r \geq r_1$. (This definition is due to Alaoglu and Birkhoff [2]; in case \mathcal{R} is directed it reduces to the standard simpler form: $x = \lim_{\mathcal{R} \to x} g$ if for each N there exists r_N in R such that $g(r) \in N$ whenever $r \geq r_N$. \mathcal{R} is directed if every pair of elements has a common successor.) A point x is called a cluster point of g if for every neighborhood N of x and every r_0 in R there exists $r_1 \geq r_0$ such that $g(r_1) \in N$. Clearly every limit point of g is a cluster point of g, but not conversely. (See Lemma 2 below.) If g is a function from \mathcal{R} into X and \mathcal{E} is a cofinal subset of \mathcal{R}, let $g_\mathcal{E}$ be the function g reduced onto \mathcal{E} and let $Qg_\mathcal{E}$ be the set of cluster points of $g_\mathcal{E}$; the function $g_\mathcal{E}$ and the set $Qg_\mathcal{E}$ will play a role here analogous to that played by the subsequence x' and the set Px' in [1]. Clearly $x = \lim_{\mathcal{R} \to x} g$ implies $x = \lim_{\mathcal{E} \to x} g_\mathcal{E}$ for every \mathcal{E} cofinal in \mathcal{R}. Let $Pg_\mathcal{E}$ be the set of limit points of functions $g_{\mathcal{E}'}$ for \mathcal{E}' cofinal in \mathcal{E}; that is, $x \in Pg_\mathcal{E}$ if and only if there exists \mathcal{E}' cofinal in (\mathcal{E}, \succeq) such that $x = \lim_{\mathcal{E}' \to x} g_{\mathcal{E}'}$.

Recall that X is said to satisfy Hausdorff's first countability condition if for each x in X there is a countable set $\{N_i\}$ of neighborhoods of x such that each neighborhood of x contains an N_i. The next lemma shows the connection between Qg and Pg.

Lemma 2. If \mathcal{R} has a countable cofinal subsystem, if X satisfies the first countability condition, and if the intersection of each pair of neighborhoods of each point x of X contains a third neighborhood of x, then x is a cluster point of g if and only if there exists \mathcal{E} cofinal in \mathcal{R} such that $x = \lim_{\mathcal{E} \to x} g_\mathcal{E}$; that is, $Qg = Pg$.

$Qg \supset Pg$ with no restriction on R or X, for $x = \lim_{\mathcal{E} \to x} g_\mathcal{E}$ and N a neighborhood of x imply that if $r \in R$, there exists $r_1 \in E$ with $r_1 \geq r$ and then an r_2 in E such that $r_2 \geq r_1$ and $g(r_2) \in N$. If \mathcal{R} and X are restricted as above and if x is a cluster point of g, there exists a sequence $\{N_i\}$ of neighborhoods of x such that each neighborhood of x contains an N_i. By the other condition there exists a decreasing sequence of such neighborhoods $N_1 \supset N_2 \supset \cdots \supset N_i \supset \cdots$. Enumerate R in a sequence $\{r_j\}$; then let r_1 be a point of $g^{-1}(N_1)$ which follows r'_1; let r_2 and r_3 be points of $g^{-1}(N_2)$ which, respectively, follow r_1 and r'_1; let r_4, r_5, r_6, r_7 be points of $g^{-1}(N_3)$ which follow r_2, r_3, and r'_2, and so on. Then $E = \{r_i\}$ contains a successor of every element of R', so is cofinal in (\mathcal{R}', \succeq) and hence cofinal in \mathcal{R}. If N is a neighborhood of x, there is an $N_i \subset N$ and there exists n such that $g(r_i) \in N_j$ if $i \geq n$.
Since the set of all r which do not precede any \(r_i, i < n \), is cofinal in \(R \) and contains all successors of each of its elements, its intersection with \(E \) is a set of the same sort in \(E \); this shows that \(E \) has the desired property; that is, that \(x = \lim_{(E, \succeq)} \{ g \} \).

Note that no such relation holds for multiple sequences if the cofinal sets of \(R \) which are used are restricted as in \([1]\) to be product sets.

We used Lemma 1 to show that "almost everywhere" has meaning in \(C \); a simple application of the same proof gives the next result which can be regarded as an extension of the lemma of \([1, \S 3]\].

Lemma 3. If \(R \) has a countable cofinal subsystem, if \(E_0 \) is cofinal in \(R \), and if \(A = \{ E \mid E \cap E_0 \) is not cofinal in \(E_0 \} \), then \(|A| = 0 \); that is, almost every \(E \) of \(C \) meets \(E_0 \) in a set cofinal in \(R \).

Let \(E_1 \) be a countable subset of \(E_0 \) cofinal in \((E_0, \succeq)\); then \(E \cap E_0 \) not cofinal in \(E_0 \) means that there exists \(r_E \in E_1 \) such that \(E \cap E_0 \cap (r_E)^* \) is empty. For fixed \(r \in E_1 \) let \(A_r = \{ E \mid E \cap E_0 \cap (r)^* \) is empty \} ; since \(E_0 \cap (r)^* \) is infinite, \(|A_r| = 0 \); since \(A = \bigcup_{r \in E_1} A_r \), \(|A| = 0 \).

2. **Cluster points.** We now proceed to the analogues of the theorems of \([1]\).

Theorem 1. If \(R \) is an index system with a countable cofinal subset, if \(X \) satisfies the first countability condition, if \(g \) is a function from \(R \) into \(X \), and if \(x \in Qg \), then \(x \in Qg_E \) for almost every \(E \) of \(C \); that is, each cluster point of \(g \) is a cluster point of almost every \(g_E \).

\(x \) is a cluster point of \(g \) if and only if \(g^{-1}(N) \) is cofinal in \(R \) for every neighborhood \(N \) of \(x \). If \(\{ N_i \} \) is an equivalent sequence of neighborhoods of \(x \), let \(A_i = \{ E \mid E \cap g^{-1}(N_i) \) is not cofinal in \(g^{-1}(N_i) \} \); then, by Lemma 3, \(|A_i| = 0 \). Setting \(A = C - \bigcup_i A_i \), \(|A| = |C| = 1 \).

If \(E \subseteq A \) and \(N \) is a neighborhood of \(x \), there is an \(N_i \subseteq N \); since \(E \cap A_i \), \(E \cap g^{-1}(N_i) \) is cofinal in \(g^{-1}(N_i) \) and hence cofinal in \(R \). Since \(E \cap g^{-1}(N) \supseteq E \cap g^{-1}(N_i) \), \(E \cap g^{-1}(N) \) is also cofinal in \(R \) and therefore is cofinal in \((E, \succeq)\); that is, if \(N \) is a neighborhood of \(x \) and \(E \subseteq A \), \(g^{-1}(N) \cap E \) is cofinal in \((E, \succeq)\), that is, \(x \) is a cluster point of \(g_E \) if \(E \subseteq A \).

Limit points have an analogous property.

Theorem 1'. If \(R \) and \(X \) satisfy the hypotheses of Theorem 1, then \(x = \lim_{(R, \succeq)} \{ g \} \) if and only if \(x = \lim_{(E, \succeq)} g_E \) for almost every \(E \) in \(C \).

If \(x = \lim_{(R, \succeq)} \{ g \} \), then \(x = \lim_{(E, \succeq)} g_E \) for every \(E \) in \(C \). If \(x \neq \lim_{(R, \succeq)} \{ g \} \),
there exists a neighborhood N of x and an r_0 in \mathbb{R} such that every $r_1 > r_0$ has a successor $r_2 > r_1$ for which $g(r_2) \in N$; let $E_0 = \{ r | g(r) \in X - N \text{ and } r > r_0 \}$; then if E_1 is so chosen that E_0 and E_1 have no common successors and $E_0 \cup E_1$ is cofinal in \mathbb{R}, by Lemma 3 the set $A = \{ E | E \cap (E_0 \cup E_1) \text{ is cofinal in } \mathbb{R} \}$ is of measure 1. For any such E, $E \cap E_0$ is cofinal in (E_0, \supseteq) so $x \neq \lim_{(E, \supseteq)} g_E$ if $E \subseteq A$; that is, $x \neq \lim_{(E, \supseteq)} g$ implies $x \neq \lim_{(E, \supseteq)} g_E$ for almost every E in \mathcal{C}.

Say that g is divergent if $x = \lim_{(E, \supseteq)} g$ is false for every x in X.

COROLLARY. Let X and \mathbb{R} satisfy the conditions of the theorem and suppose that g is divergent; then for each x in X the set $A_x = \{ E | x = \lim_{(E, \supseteq)} g_E \}$ is of measure zero. Hence if almost every g_E has a limit point, then P_g is uncountable.

The first statement follows immediately from the theorem. For the second, $\{ E \mid g_E \text{ has a limit point} \} = \bigcup_{x \subseteq P_x} A_x$; since $|A_x| = 0$ and $\bigcup_{x \subseteq P_x} A_x = 1$, P_g is uncountable.

The next two results are related to Theorem 1' but stronger hypotheses enable us to draw stronger conclusions.

Theorem 2. If X and \mathbb{R} satisfy the conditions of Theorem 1 and if each pair of distinct points of X has a pair of disjoint neighborhoods, then g is divergent if and only if almost every g_E is divergent.

If g has the limit x, so does every g_E. If g is divergent, by the corollary $|A_x| = 0$ for every x. By the first statement in the proof of Lemma 2, if $x_1 = \lim_{(E, \supseteq)} g_E$, then x_1 is a cluster point of g; by Theorem 1, x_1 is a cluster point of almost every g_E. Let $A = \{ E \mid x_1 \neq \lim_{(E, \supseteq)} g_E \text{ but } g_E \text{ has a limit point} \}$. If E is in A, let $x = \lim_{(E, \supseteq)} g_E$; since there exist disjoint neighborhoods N_1 of x_1 and N of x and since g_E plunges eventually into N, there is an r_1 in E such that $g_E(r) \in N_1$ if $r > r_1$ and $r \in E$. Hence $g_E^{-1}(N_1)$ is not cofinal in (E, \supseteq), so x_1 is not a cluster point of g_E when $E \subseteq A$. Hence $|A| = 0$ by Theorem 1; since $|A_x| = 0$ also, we see that $|\{ E \mid g_E \text{ has a limit} \}| = |A| + |A_x| = 0$.

Buck notes that the proof of Theorem 1' can easily be modified to prove another theorem with the same conclusion as that of Theorem 2.

Theorem 2'. If \mathbb{R} has a countable cofinal subset and if X satisfies Hausdorff's second countability condition, then g is divergent if and only if almost every g_E is divergent.

4 This is the separation condition in a Hausdorff space; however X need not satisfy the other axioms of such a space.

5 In this system the second countability condition becomes: There exists a countable subset $\{ N_i \}$ of subsets of X such that for each x and each neighborhood N of x there is an i such that N_i contains a neighborhood of x and $N_i \subseteq N$.

Lemma 4. If every neighborhood \(N \) of \(x \) contains a neighborhood \(N' \) of \(x \) such that for every \(y \) in \(N' \) there is a neighborhood \(N_y \) of \(y \) with \(N_y \subset N \), then \(Qg \) is closed in \(X \).

If \(x \) is in the closure of \(Qg \), then for every neighborhood \(N \) of \(x \) there is a point \(y \) in \(N' \cap Qg \); then for every \(r_0 \) in \(R \) there exists \(r_1 \geq r_0 \) such that \(g(r_1) \subset N_y \subset N \) so \(x \in Qg \).

Theorem 3. If \(\mathcal{R} \) and \(X \) satisfy the hypotheses of Theorem 1 and Lemma 4, and if \(Qg \) is separable, then \(Qg = Qg_E \) for almost every \(E \) in \(\mathcal{C} \).

Take a countable dense subset \(X' \) of \(Qg \) and follow the proof of Theorem 3 of [1], using Theorem 1 and Lemma 4 at the appropriate points. This is much stronger than the corresponding theorem of [1]; the principal extension is that this formulation is valid for all essentially countable index systems rather than for the integers alone. In case \(\mathcal{R} \) is the system of integers, this result includes that of [1] since the hypotheses of [1, Theorem 3] imply the hypotheses of Theorem 1 and Lemmas 2 and 4; Theorems 1 and 2 are not generalizations of the corresponding results of [1] but rather are generalizations in a slightly different direction from the case \(n = 1 \) of those theorems.

Note that a metric space satisfies all the hypotheses on \(X \) except that on \(Qg \) in Theorem 3; there the requirement that \(X \) is separable would be a sufficient additional condition. Hence with \(X \) metric and \(\mathcal{R} \) having a countable cofinal subset, the set \(Qg \) used in this paper is equal to the set \(P_g \) analogous to \(P_x \) of [1]. Any countable index system will do for \(\mathcal{R} \) as will the system of real numbers ordered by magnitude or the system of \(n \)-tuples of real numbers ordered by magnitude or the system of \(n \)-tuples of real numbers ordered by \((a_1, \ldots, a_n) \geq (b_1, \ldots, b_n) \) if \(a_i \geq b_i \) for all \(i \leq n \). Another such system is the system of \(n \)-tuples \((r_1, \ldots, r_n) \) where \(r_i \in \mathcal{R}_i \), an index system with a countable cofinal subset, and where \((r_1, \ldots, r_n) > (r'_1, \ldots, r'_n) \) if \(r_i > r'_i \) or \(r_1 = r'_1 \) and \(r_2 > r'_2 \) or, for some \(j \leq n \), \(r_i = r'_i \) for \(i < j \) while \(r_j > r'_j \). (This is the so-called ordinal or lexicographic product of the systems \(\mathcal{R}_i \).) Still another example is the system of pairs of integers where \((i_1, i_2) \geq (j_1, j_2) \) means that \(i_1 = i_2 \) and \(j_1 \geq j_2 \).

It may be noted by means of Lemmas 1 and 3 that the proofs of Theorems 1 and 2 of [1] also hold when the set \(I \times I \times \cdots \times I \) used in [1] as the domain of the function \(x = x[i_1, i_2, \ldots, i_n] \) is replaced by \(\mathcal{R}_1 \times \mathcal{R}_2 \times \cdots \times \mathcal{R}_n \), where the \(\mathcal{R}_i \) are any index systems with countable cofinal subsystems, providing that \(\mathcal{S} \) is then defined as \(\mathcal{C}_1 \times \mathcal{C}_2 \times \cdots \times \mathcal{C}_n \) where \(\mathcal{C}_i \) is the family of cofinal subsets of \(\mathcal{R}_i \). The theorems thus obtained almost include the corresponding results of both papers, the case \(n = 1 \) giving analogues of the present theorems.
with stronger hypotheses, the case where all $R_i = I$ giving those of [1].

An open question is whether the existence of a countable cofinal subset is needed to derive the conclusions of Lemmas 1 and 3; if not, some weakening of the hypotheses of the theorems would be possible.

BIBLIOGRAPHY

University of Illinois