SCHUR'S THEOREMS ON COMMUTATIVE MATRICES

N. JACOBSON

In 1905 I. Schur proved that the maximum number $N(n)$ of linearly independent commutative matrices of n rows and columns is given by the formula $N(n) = \left\lfloor \frac{n^2}{4} \right\rfloor + 1 = \nu^2 + 1$ if $n = 2\nu$ and $= \nu(\nu - 1) + 1$ if $n = 2\nu - 1$. Schur also determined the sets of linearly independent commutative matrices containing $N(n)$ elements. In this note we give a simpler derivation of Schur's results and an extension of these results from algebraically closed fields to arbitrary fields.

If $A_1, \cdots, A_{N(n)}$ is a set of linearly independent commutative matrices, the set \mathcal{U} of matrices $\sum A_i \phi_i$ where ϕ_i is arbitrary in the underlying field Φ is a commutative subalgebra containing the identity of the matrix algebra Φ_n. Hence $N(n)$ is the maximal dimensionality of commutative subalgebras of Φ_n. It is easy to see that $N(n) \geq \left\lfloor \frac{n^2}{4} \right\rfloor + 1$. For consider the set \mathcal{B}_n of matrices

$$
\begin{pmatrix}
0 & A \\
0 & 0
\end{pmatrix}
$$

where if $n = 2\nu$, A is arbitrary in Φ, and if $n = 2\nu - 1$, A is an arbitrary matrix of ν rows and $\nu - 1$ columns. Thus $\dim \mathcal{B}_n = \left\lfloor \frac{n^2}{4} \right\rfloor$. It may be verified that \mathcal{B}_n is a zero algebra. Hence the algebra \mathcal{B}_n obtained by adjoining 1 to \mathcal{B}_n is a commutative algebra of dimensionality $\left\lfloor \frac{n^2}{4} \right\rfloor + 1$. We remark also that if $n = 2\nu - 1$ we may replace \mathcal{B}_n by the algebra $\overline{\mathcal{B}}_n$ of matrices of the form (1) in which A is an arbitrary matrix of $\nu - 1$ rows and ν columns. We denote by $\overline{\mathcal{B}}_n$ the extension of \mathcal{B}_n obtained by adjoining 1.

To prove that $N(n) \leq \left\lfloor \frac{n^2}{4} \right\rfloor + 1$ it suffices to assume that Φ is algebraically closed. For if $A_1, \cdots, A_{N(n)}$ are linearly independent and commutative in Φ_n, then they have these properties in Σ_n for any extension field Σ of the field Φ. Thus $N(n, \Phi) \leq N(n, \Sigma)$. We shall therefore assume that Φ is algebraically closed. Let \mathcal{U} be a commutative subalgebra of Φ_n containing the identity and let N be the dimensionality of \mathcal{U} over Φ. We suppose first that \mathcal{U} is an indecomposable algebra of matrices. Then it is known that by replacing \mathcal{U} by a similar set we may suppose that the matrices of \mathcal{U} have the form

Received by the editors January 14, 1944.

Thus \(\mathfrak{N} = (1) + \mathfrak{N} \) where \(\mathfrak{N} \) is a nilpotent algebra of matrices in proper triangular form, that is, of the form (2) in which \(\alpha = 0 \). Evidently \(\dim \mathfrak{N} = N - 1 \).

Let the \(k_1 \)th column (\(k_1 > 1 \)) be the first column for which there exists a matrix \(U_{1k_1} \) in \(\mathfrak{N} \) with element in the \((1, k_1)\) position not equal to 0. We may suppose that the element in the \((1, k_1)\) position of \(U_{1k_1} \) is 1. We normalize \(U_{1k_1} \) further by using the following lemma.

Lemma 1. Let \(U \in \Phi_n \) and let \(V \) be the matrix obtained from \(U \) by adding the \(k \)th column multiplied by \(\theta \) to the \(l \)th column (\(k \neq l \)) and then subtracting the \(l \)th row multiplied by \(\theta \) from the \(k \)th row. Then \(U \) and \(V \) are similar.

We have \(V = S^{-1}US \) where \(S = 1 + e_{kl} \theta, e_{kl} \) the matrix with 1 in the \((k, l)\) position and 0's elsewhere.

We may apply this lemma to \(U_{1k_1} \) and replace it by a matrix whose first row is \(e_{k_1} = (0, \ldots, 1, 0, \ldots, 0) \) where the 1 is in the \(k_1 \)th column. The operations required for this purpose are additions of multiples of the \(k_1 \)th column to later columns and additions to the \(k_1 \)th row of later rows. These operations replace \(\mathfrak{N} \) by a properly triangular set of matrices \(\mathfrak{N}' \) similar to \(\mathfrak{N} \) such that all the elements in the \((1, j)\) position with \(j < k_1 \) in \(\mathfrak{N}' \) are 0 and such that \(\mathfrak{N}' \) contains a matrix \(V_{1k_1} \) (similar to \(U_{1k_1} \)) whose first row is \(e_{k_1} \). Now let \(\Psi' \) be the subspace of \(\mathfrak{N}' \) of matrices in which the elements in the \((1, k_1)\) position are 0 and suppose that the \(k_2 \)th column (\(k_2 > k_1 \)) is the first column for which there is a matrix \(U_{1k_2} \) in \(\mathfrak{N}' \) with element in the \((1, k_2)\) place not equal to 0. Evidently any matrix in \(\mathfrak{N}' \) has the form \(V_{1k_1} \beta_1 + P', P' \) in \(\Psi' \). We now apply to \(U_{1k_2} \) the process used before for \(U_{1k_1} \), and replace it by a matrix \(V_{1k_2} \) similar to it and having \(e_{k_2} \) for first row. The set \(\mathfrak{N}' \) will be transformed into a set \(\mathfrak{N}'' \) of properly triangular matrices and \(V_{1k_1} \) changed into a new matrix which we shall again denote as \(V_{1k_1} \) with first row \(e_{k_1} \). Any matrix in \(\mathfrak{N}'' \) has the form \(A = V_{1k_1} \beta_1 + P'', P'' \) in \(\Psi'' \), the transform of the set \(\Psi' \). It is clear that the elements in the \((1, j)\) position, \(j < k_2 \), for any matrix in \(\Psi'' \) are 0. Hence \(A = V_{1k_1} \beta_1 + V_{1k_2} \beta_2 + S'' \) where \(S'' \) is in the subspace \(\mathfrak{S}'' \) of \(\mathfrak{N}'' \) of matrices having 0 in the \((1, j)\) position with \(j \leq k_2 \). This process may be continued and proves the following lemma.

Lemma 2. The set \(\mathfrak{N} \) is similar to a set \(\mathfrak{N}^{(r)} \) of properly triangular
matrices that contain matrices $V_{1k_1}, \ldots, V_{1k_r}$ such that the first row of V_{1k_i} is $e_{k_i}, 1 < k_1 < k_2 < \cdots < k_r$, and such that any matrix in $\mathfrak{N}^{(r)}$ has the form $\sum V_{1k_i} \beta_i + Z$, where Z has first row 0.

Now let \mathfrak{N}_2 be the subset of $\mathfrak{N}^{(r)}$ of matrices Z having first row 0. Evidently $\mathfrak{N}^{(r)} = \{ V_{1k_1}, \ldots, V_{1k_r} \} + \mathfrak{N}_2$ and the V_{1k_i} are linearly independent. Hence $\dim \mathfrak{N}^{(r)} = N - 1 = r + \dim \mathfrak{N}_2$. Now we note that if $Z \in \mathfrak{N}_2$, the first row of $V_{1k_i}Z$ is the k_ith row of Z and the first row of $Z V_{1k_i}$ is 0. Hence the k_ith row of every matrix Z in \mathfrak{N}_2 is 0.

We now repeat the argument for \mathfrak{N}_2. Then \mathfrak{N}_2 may be replaced by a set $\mathfrak{N}_2^{(o)}$ similar to \mathfrak{N}_2 such that (1) $\mathfrak{N}_2^{(o)}$ is properly triangular, (2) $\mathfrak{N}_2^{(o)}$ contains matrices $V_{2t_1}, \ldots, V_{2t_r}$ having first row 0 and second row e_{t_1}, \ldots, e_{t_r} respectively, such that any matrix in $\mathfrak{N}_2^{(o)}$ has the form $\sum V_{2t_i} \beta_i + Z$ where Z is a matrix with first two rows 0. Let \mathfrak{N}_3 denote the set of matrices Z. We assert that if $s = l_1$ or $s = k_j$ then the sth row of \mathfrak{N}_3 is 0. This is clear if $s = l_i$. Hence suppose that $s = k_j \neq$ any l_i. Then the matrices of \mathfrak{N}_3 all have k_jth row 0 and the operations performed in passing from \mathfrak{N}_2 to $\mathfrak{N}_2^{(o)}$ do not affect this row. Hence the k_jth row of every matrix in $\mathfrak{N}_2^{(o)}$ is 0. Evidently $N - 1 = r + s + \dim \mathfrak{N}_3$.

We now write $k_1 = k_{11}, l_i = k_{2i}, r = r_1, s = r_2$. Then if we continue this process we see that $N - 1$ is equal to the number of matrices in the following set

$$\begin{align*}
 & e_{1k_{11}}, \ldots, e_{1k_{r_1}} \\
 & e_{2k_{11}}, \ldots, e_{2k_{r_2}} \\
 & \hspace{1cm} \ldots \\
\end{align*}$$

(3) where $1 < k_{11} < \cdots < k_{1r_1}, 2 < k_{21} < k_{22} < \cdots < k_{2r_2}, \ldots$, and $r_i = 0$ if $i = k_{ji}$ with $j < i$. Let s_1, s_2, \ldots, s_m be the complete set of integers k_{ij} arranged in increasing order. Then it is clear that $N - 1 \leq N(s_1, s_2, \ldots, s_m)$, the number of matrices in the set

$$\begin{align*}
 & e_{1s_1}, e_{2s_1}, \ldots, e_{1s_1 - 1}s_1 \\
 & e_{2s_1}, e_{2s_2}, \ldots, e_{2s_1 - 1}s_{21}, e_{2s_1 + 1}s_{21}, \ldots, e_{2s_1 - 1}s_2 \\
 & \hspace{1cm} \ldots \\
\end{align*}$$

(4) Evidently

$$\begin{align*}
 N(s_1, s_2, \ldots, s_m) &= (s_1 - 1) + (s_2 - 2) + \cdots + (s_m - m) \\
 &= \sum s_i - m(m + 1)/2.
\end{align*}$$

Hence we have
\(N - 1 \leq N(s_1, \ldots, s_m) \leq N(n - m + 1, \ldots, n)\)

\[= m(n - m).\]

Now \(m(n - m)\) attains its maximum value for \(m = \lfloor n/2 \rfloor\). If \(n = 2\nu\) this maximum is \(\nu^2\) and if \(n = 2\nu - 1\), it is \(\nu(\nu - 1)\). Thus the maximum value is \([n^2/4]\). This proves for indecomposable algebras \(\mathcal{A}\) the following theorem.

Theorem 1. If \(\mathcal{A}\) is a commutative subalgebra of \(\Phi_n\), \(\dim \mathcal{A} \leq [n^2/4] + 1\).

If \(\mathcal{A}\) is decomposable we suppose that the matrices of \(\mathcal{A}\) have the form

\[
\begin{pmatrix}
A & 0 \\
0 & B
\end{pmatrix}
\]

where \(A \in \Phi_{n_1}\) and \(B \in \Phi_{n_2}\), \(n_i \geq 1\), \(n_1 + n_2 = n\). We may assume that the theorem holds for the \(\Phi_{n_i}\).

Case 1. \(n = 2\nu - 1\), \(n_1 = 2\nu_1 - 1\), \(n_2 = 2\nu_2\). Here \(\nu = \nu_1 + \nu_2\) and \(N \leq \nu_1(\nu_1 - 1) + 1 + \nu_2^2 + 1 \leq \nu(\nu - 1) + 1\). Equality holds between the last two terms only when \(n = 3\).

Case 2. \(n = 2\nu\), \(n_1 = 2\nu_1 - 1\), \(n_2 = 2\nu_2 - 1\). Here \(\nu = \nu_1 + \nu_2 - 1\) and \(N \leq \nu_1(\nu_1 - 1) + 1 + \nu_2(\nu_2 - 1) + 1 \leq \nu^2 + 1\). Equality holds only if \(n = 2\).

Case 3. \(n = 2\nu\), \(n_1 = 2\nu_1\), \(n_2 = 2\nu_2\). Here \(\nu = \nu_1 + \nu_2\) and \(N = \nu_1^2 + 1 + \nu_2^2 + 1 < \nu^2 + 1\). Thus the theorem is proved.

We have also proved the following theorem.

Theorem 2. The maximum number \(N(n)\) of linearly independent commutative matrices of \(n\) rows and columns is given by the formula

\(N(n) = [n^2/4] + 1\).

We shall investigate next the form of commutative subalgebras \(\mathcal{A}\) of \(\Phi_n\) of the maximum dimensionality \(N(n)\). Suppose first that \(\mathcal{A}\) has the structure \(\mathcal{A} = (1) + \mathcal{R}\) where \(\mathcal{R}\) is a nilpotent algebra. Then it is known that by replacing \(\mathcal{R}\) by a similar set we may suppose that the matrices of \(\mathcal{R}\) are properly triangular. We may apply the above considerations to \(\mathcal{R}\). By (3), (4), (5) and (6) we see that if \(n = 2\nu\) we must have \(k_{11} = k_{21} = \cdots = k_{11} = \nu + 1\), \(\cdots\), \(k_{1\nu} = k_{2\nu} = \cdots = k_{\nu\nu} = n\) as the set of \(k\)'s in (3). If \(n = 2\nu - 1\) the set of \(k\)'s is either \(k_{11} = \cdots = k_{1\nu} = \nu + 1\), \(\cdots\), \(k_{1\nu - 1} = \cdots = k_{\nu - 1, \nu - 1} = n\) or \(k_{11} = \cdots = k_{\nu - 1, \nu - 1} = \nu\), \(\cdots\), \(k_{11} = \cdots = k_{\nu - 1, \nu} = n\). Suppose first that \(n\) is even. Let \(\mathcal{R}^{(r)} (r = \nu)\) and \(\mathcal{R}_2\) be determined as before. It is clear that \(\mathcal{R}^{(r)}\) is similar to \(\mathcal{R}\) by a matrix in \(\Phi_n\) and we need not assume here that \(\Phi\) is algebraically closed. The matrices of \(\mathcal{R}_2\) have the form
Since $k_{31} = \nu + 1$ it is clear that the second row of R is 0. Moreover the operations used to pass from \mathfrak{N}_2 to \mathfrak{N}_3 affect only the last ν rows and last ν columns of \mathfrak{N}_2. Hence the third row of R is the same as the third row of the corresponding matrix in \mathfrak{N}_3. Since $k_{31} = \nu + 1$ the third row of R is 0. Similarly the other rows of R are 0, and $R = 0$ in (7). Now $\dim \mathfrak{N}_2 = \nu^2 - \nu$. Hence \mathfrak{N}_2 consists of all matrices of the form (7) in which $R = 0$ and A is arbitrary. Let

$$V_{1j} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ & & \vdots & & V_j & & \vdots & \\ & & & & T_j & & & \\ \end{pmatrix}, \quad j = \nu + 1, \ldots, n,$$

where the 1 is in the jth column and T_j is a properly triangular matrix.

Since $V_{1j}B = BV_{1j}$ the following holds in Φ:

$$\begin{pmatrix} 0 & \cdots & 0 \\ & A \\ \end{pmatrix} T_j = 0.$$

Since A is arbitrary, $T_j = 0$. Thus $\mathfrak{N}^{(r)}$ is the set \mathfrak{B}_n and \mathfrak{A} is similar to the algebra \mathfrak{B}_n defined before. If n is odd a similar argument shows that \mathfrak{A} is similar either to \mathfrak{B}_n or to \mathfrak{B}_n.

We suppose now that \mathfrak{A} is arbitrary. Evidently \mathfrak{A} contains the identity matrix. Since $n > 3$ by the proof of Theorem 1, \mathfrak{A} is indecomposable. Moreover if Ω is the algebraic closure of Φ then \mathfrak{A}_Ω is an indecomposable algebra containing the identity. It follows that \mathfrak{A}_Ω is similar to a set of matrices of the form (1). Hence $\mathfrak{A}_\Omega = (1) + \mathfrak{B}$ where \mathfrak{B} is nilpotent and so \mathfrak{A}_Ω is similar to either $\mathfrak{B}_n(\Omega)$ or $\mathfrak{B}_n(\Omega)$. Thus \mathfrak{B} is a zero algebra. Now let \mathfrak{N} be the radical of the algebra \mathfrak{A} and consider the semi-simple algebra $\mathfrak{A} = \mathfrak{A} - \mathfrak{N}$. The extension \mathfrak{A}_Ω is a homomorphic image of \mathfrak{A}_Ω. Hence $\mathfrak{A}_\Omega = (1) + \mathfrak{B}$ where \mathfrak{B} is a zero algebra. The structure of \mathfrak{A} is given by the following lemma.

Lemma 3. If \mathfrak{A} is a semi-simple commutative algebra such that $\mathfrak{A}_n = (1) + \mathfrak{B}$ where \mathfrak{B} is a zero algebra, then either $\mathfrak{A} = (1)$ or Φ is an imperfect field of characteristic 2 and $\mathfrak{A} = \Phi(x)$ where $x^2 = \xi$, a non-square in Φ.

Since \mathfrak{A} is semi-simple, \mathfrak{A} is a direct sum of fields, but since \mathfrak{A}_Ω has only one idempotent element, \mathfrak{A} is a field. Let $\mathfrak{A} > (1)$. Then \mathfrak{A} has no
separable subfields, for if \(\Sigma \) were such a subfield \(\Sigma_0 \) is a direct sum of fields and \(\Lambda_\sigma \) would contain more than one idempotent element. Thus \(\Phi \) has characteristic \(p \neq 0 \) and \(\Lambda_\sigma \) contains an element \(x \) such that \(x^p = \xi \) is in \(\Phi \) where \(\xi \) is not a \(p \)th power in \(\Phi \). Now there exists an element \(\eta \) in \(\Omega \) such that \(\eta^p = \xi \) and hence the element \(z = x - \eta \) in \(\Lambda_\sigma \) is nilpotent of index \(p \). Since \(\Lambda_\sigma \) is a zero algebra, \(p = 2 \). It follows readily that in this case \(\Lambda = \Phi(x), x^2 = \xi \).

This lemma shows that unless \(\Phi \) is an imperfect field of characteristic 2 any commutative subalgebra \(\Omega \) of \(\Phi_n(n > 3) \) of maximum dimensionality has a difference algebra with respect to its radical \(\mathcal{R} \) of dimensionality 1. Since \(\Lambda \) contains the identity, \(\Lambda = (1) + \mathcal{R} \). As we have seen, this implies that \(\Lambda \) is similar to either \(\mathcal{B}_n \) or to \(\mathcal{B}_n \).

Theorem 3. Suppose that \(\Phi \) is not an imperfect field of characteristic 2 and let \(n > 3 \). Then if \(\Omega \) is a subalgebra of \(\Phi_n \) of maximum dimensionality \(N(n) \), \(\Omega \) is similar to \(\mathcal{B}_n \) if \(n = 2v \) and \(\Omega \) is similar to either \(\mathcal{B}_n \) or \(\mathcal{B}_n \) if \(n = 2v - 1 \).

As a consequence we have the following theorem.

Theorem 4. Let \(\Phi, n \) and \(\Lambda \) be as in Theorem 3. Then \(\Lambda = (1) + \mathcal{R} \) where \(\mathcal{R} \) is a zero algebra.

We remark finally that if \(n \) is odd the sets \(\mathcal{B}_n \) and \(\mathcal{B}_n \) are not similar. This may be seen by considering the sets \(\mathcal{B}_n \) and \(\mathcal{B}_n \). Let \(\mathcal{S} = \mathcal{S}(\mathcal{E}) \) be the space determined by the columns of the matrices of \(\mathcal{B}_n(\mathcal{B}_n) \). Then \(\dim \mathcal{S} = v \) and \(\dim \mathcal{E} = v - 1 \). On the other hand if \(\mathcal{B}_n \) were similar to \(\mathcal{B}_n \) we would have \(\dim \mathcal{S} = \dim \mathcal{E} \). It follows that \(\mathcal{B}_n \) and \(\mathcal{B}_n \) are not similar and hence \(\mathcal{B}_n \) and \(\mathcal{B}_n \) are not similar. Thus in this case there are for \(n = 2v - 1 > 3 \) two distinct classes in the sense of similarity of commutative subalgebras of dimensionality \(N(n) \).

Johns Hopkins University

\(^3\) If \(n = 2, 3, \mathcal{R} \) may be decomposable. The determination of these algebras is readily obtained.